?>
IT eBooks
Download, Read, Use

Python eBooks

Hands-On Financial Trading with Python
Hands-On Financial Trading with Python

Algorithmic trading helps you stay ahead of the markets by devising strategies in quantitative analysis to gain profits and cut losses. The book starts by introducing you to algorithmic trading and explaining why Python is the best platform for developing trading strategies. You'll then cover quantitative analysis using Python and learn how to build algorithmic trading strategies with Zipline using various market data sources. Using Zipline as the backtesting library allows access to complimentary US historical daily market data until 2018. As you advance, you will gain an in-depth understanding of Python libraries such as NumPy and pandas for analyzing financial datasets, and explore Matplotlib, statsmodels, and scikit-learn libraries for advanced analytics. You'll also focus on time series forecasting, covering pmdarima and Facebook Prophet. By the end of this trading book, you will be able to build predictive trading signals, adopt basic and advanced algor ...
Generative AI with Python and TensorFlow 2
Generative AI with Python and TensorFlow 2

In recent years, generative artificial intelligence has been instrumental in the creation of lifelike data (images, speech, video, music, and text) from scratch. In this book you will unpack how these powerful models are created from relatively simple building blocks, and how you might adapt these models to your own use cases. You will begin by setting up clean containerized environments for Python and getting to grips with the fundamentals of deep neural networks, learning about core concepts like the perceptron, activation functions, backpropagation, and how they all tie together. Once you have covered the basics, you will explore deep generative models in depth, including OpenAI's GPT-series of news generators, networks for style transfer and deepfakes, and synergy with reinforcement learning. As you progress, you will focus on abstractions where useful, and understand the "nuts and bolts" of how the models are composed in code, underpinned by detailed architecture diag ...
Quantum Machine Learning with Python
Quantum Machine Learning with Python

Quickly scale up to Quantum computing and Quantum machine learning foundations and related mathematics and expose them to different use cases that can be solved through Quantum based algorithms.This book explains Quantum Computing, which leverages the Quantum mechanical properties sub-atomic particles. It also examines Quantum machine learning, which can help solve some of the most challenging problems in forecasting, financial modeling, genomics, cybersecurity, supply chain logistics, cryptography among others. You'll start by reviewing the fundamental concepts of Quantum Computing, such as Dirac Notations, Qubits, and Bell state, followed by postulates and mathematical foundations of Quantum Computing. Once the foundation base is set, you'll delve deep into Quantum based algorithms including Quantum Fourier transform, phase estimation, and HHL (Harrow-Hassidim-Lloyd) among others. You'll then be introduced to Quantum machine learning and Quantum deep learning-based algorithms, ...
Advancing into Analytics
Advancing into Analytics

Data analytics may seem daunting, but if you're an experienced Excel user, you have a unique head start. With this hands-on guide, intermediate Excel users will gain a solid understanding of analytics and the data stack. By the time you complete this book, you'll be able to conduct exploratory data analysis and hypothesis testing using a programming language. Exploring and testing relationships are core to analytics. By using the tools and frameworks in this book, you'll be well positioned to continue learning more advanced data analysis techniques. Author George Mount, founder and CEO of Stringfest Analytics, demonstrates key statistical concepts with spreadsheets, then pivots your existing knowledge about data manipulation into R and Python programming. This practical book guides you through: - Foundations of analytics in Excel: Use Excel to test relationships between variables and build compelling demonstrations of important concepts in statistics and analytics; - Fro ...
Mastering Python for Bioinformatics
Mastering Python for Bioinformatics

Life scientists today urgently need training in bioinformatics skills. Too many bioinformatics programs are poorly written and barely maintained, usually by students and researchers who've never learned basic programming skills. This practical guide shows postdoc bioinformatics professionals and students how to exploit the best parts of Python to solve problems in biology while creating documented, tested, reproducible software. Ken Youens-Clark, author of Tiny Python Projects (Manning), demonstrates not only how to write effective Python code but also how to use tests to write and refactor scientific programs. You'll learn the latest Python features and tools including linters, formatters, type checkers, and tests to create documented and tested programs. You'll also tackle 14 challenges in Rosalind, a problem-solving platform for learning bioinformatics and programming. - Create command-line Python programs to document and validate parameters ...
Practical Deep Learning
Practical Deep Learning

If you've been curious about machine learning but didn't know where to start, this is the book you've been waiting for. Focusing on the subfield of machine learning known as deep learning, it explains core concepts and gives you the foundation you need to start building your own models. Rather than simply outlining recipes for using existing toolkits, Practical Deep Learning teaches you the why of deep learning and will inspire you to explore further. All you need is basic familiarity with computer programming and high school math - the book will cover the rest. After an introduction to Python you'll move through key topics like how to build a good training dataset, work with the scikit-learn and Keras libraries, and evaluate your models' performance. You'll also learn: - How to use classic machine learning models like k-Nearest Neighbors, Random Forests, and Support Vector Machines; - How neural networks work and how they're trained; - How to use convolutional neural n ...
Dive Into Algorithms
Dive Into Algorithms

Dive Into Algorithms is a wide-ranging, Pythonic tour of many of the world's most interesting algorithms. With little more than a bit of computer programming experience and basic high-school math, you'll explore standard computer science algorithms for searching, sorting, and optimization; human-based algorithms that help us determine how to catch a baseball or eat the right amount at a buffet; and advanced algorithms like ones used in machine learning and artificial intelligence. You'll even explore how ancient Egyptians and Russian peasants used algorithms to multiply numbers, how the ancient Greeks used them to find greatest common divisors, and how Japanese scholars in the age of samurai designed algorithms capable of generating magic squares. You'll explore algorithms that are useful in pure mathematics and learn how mathematical ideas can improve algorithms. You'll learn about an algorithm for generating continued fractions, one for quick calculations of square roots, and anot ...
Computer Vision Using Deep Learning
Computer Vision Using Deep Learning

Organizations spend huge resources in developing software that can perform the way a human does. Image classification, object detection and tracking, pose estimation, facial recognition, and sentiment estimation all play a major role in solving computer vision problems. This book will bring into focus these and other deep learning architectures and techniques to help you create solutions using Keras and the TensorFlow library. You'll also review mutliple neural network architectures, including LeNet, AlexNet, VGG, Inception, R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, YOLO, and SqueezeNet and see how they work alongside Python code via best practices, tips, tricks, shortcuts, and pitfalls. All code snippets will be broken down and discussed thoroughly so you can implement the same principles in your respective environments. Computer Vision Using Deep Learning offers a comprehensive yet succinct guide that stitches DL and CV together to automate operations, reduce human i ...
Beyond the Basic Stuff with Python
Beyond the Basic Stuff with Python

You've completed a basic Python programming tutorial or finished Al Sweigart's best selling Automate the Boring Stuff with Python. What's the next step toward becoming a capable, confident software developer? Welcome to Beyond the Basic Stuff with Python. More than a mere collection of advanced syntax and masterful tips for writing clean code, you'll learn how to advance your Python programming skills by using the command line and other professional tools like code formatters, type checkers, linters, and version control. Sweigart takes you through best practices for setting up your development environment, naming variables, and improving readability, then tackles documentation, organization and performance measurement, as well as object-oriented design and the Big-O algorithm analysis commonly used in coding interviews. The skills you learn will boost your ability to program - not just in Python but in any language. You'll learn: - Coding style, and how to u ...
Machine Learning for Algorithmic Trading, 2nd Edition
Machine Learning for Algorithmic Trading, 2nd Edition

The explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This thoroughly revised and expanded 2nd edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models. This edition introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this workflow using examples that range from linear models and tree-based ensembles to deep-learning techniques from the cutting edge of the research frontier. This revised version shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable a machine learning model to predict returns f ...
Python Machine Learning By Example, 3rd Edition
Python Machine Learning By Example, 3rd Edition

Python Machine Learning By Example, 3rd Edition serves as a comprehensive gateway into the world of machine learning (ML). With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements. At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python both from scratch and with libraries. Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechan ...
      Next →
Reproduction of site books is authorized only for informative purposes and strictly for personal, private use.
Only Direct Download
IT eBooks Group © 2011-2021