?>
IT eBooks
Download, Read, Use

Mac eBooks

Reliable Machine Learning
Reliable Machine Learning

Whether you're part of a small startup or a multinational corporation, this practical book shows data scientists, software and site reliability engineers, product managers, and business owners how to run and establish ML reliably, effectively, and accountably within your organization. You'll gain insight into everything from how to do model monitoring in production to how to run a well-tuned model development team in a product organization. By applying an SRE mindset to machine learning, authors and engineering professionals Cathy Chen, Kranti Parisa, Niall Richard Murphy, D. Sculley, Todd Underwood, and featured guest authors show you how to run an efficient and reliable ML system. Whether you want to increase revenue, optimize decision making, solve problems, or understand and influence customer behavior, you'll learn how to perform day-to-day ML tasks while keeping the bigger picture in mind. ...
Applied Machine Learning and AI for Engineers
Applied Machine Learning and AI for Engineers

While many introductory guides to AI are calculus books in disguise, this one mostly eschews the math. Instead, author Jeff Prosise helps engineers and software developers build an intuitive understanding of AI to solve business problems. Need to create a system to detect the sounds of illegal logging in the rainforest, analyze text for sentiment, or predict early failures in rotating machinery? This practical book teaches you the skills necessary to put AI and machine learning to work at your company. Applied Machine Learning and AI for Engineers provides examples and illustrations from the AI and ML course Prosise teaches at companies and research institutions worldwide. There's no fluff and no scary equations - just a fast start for engineers and software developers, complete with hands-on examples. ...
Quantum Machine Learning and Optimisation in Finance
Quantum Machine Learning and Optimisation in Finance

With recent advances in quantum computing technology, we finally reached the era of Noisy Intermediate-Scale Quantum (NISQ) computing. NISQ-era quantum computers are powerful enough to test quantum computing algorithms and solve hard real-world problems faster than classical hardware. Speedup is so important in financial applications, ranging from analysing huge amounts of customer data to high frequency trading. This is where quantum computing can give you the edge. Quantum Machine Learning and Optimisation in Finance shows you how to create hybrid quantum-classical machine learning and optimisation models that can harness the power of NISQ hardware. This book will take you through the real-world productive applications of quantum computing. The book explores the main quantum computing algorithms implementable on existing NISQ devices and highlights a range of financial applications that can benefit from this new quantum computing paradigm. This book will help you be one of t ...
Python Feature Engineering Cookbook, 2nd Edition
Python Feature Engineering Cookbook, 2nd Edition

Feature engineering, the process of transforming variables and creating features, albeit time-consuming, ensures that your machine learning models perform seamlessly. This second edition of Python Feature Engineering Cookbook will take the struggle out of feature engineering by showing you how to use open source Python libraries to accelerate the process via a plethora of practical, hands-on recipes. This updated edition begins by addressing fundamental data challenges such as missing data and categorical values, before moving on to strategies for dealing with skewed distributions and outliers. The concluding chapters show you how to develop new features from various types of data, including text, time series, and relational databases. With the help of numerous open source Python libraries, you'll learn how to implement each feature engineering method in a performant, reproducible, and elegant manner. By the end of this Python book, you will have the tools and expertise needed to ...
Machine Learning Engineering on AWS
Machine Learning Engineering on AWS

There is a growing need for professionals with experience in working on machine learning (ML) engineering requirements as well as those with knowledge of automating complex MLOps pipelines in the cloud. This book explores a variety of AWS services, such as Amazon Elastic Kubernetes Service, AWS Glue, AWS Lambda, Amazon Redshift, and AWS Lake Formation, which ML practitioners can leverage to meet various data engineering and ML engineering requirements in production. This machine learning book covers the essential concepts as well as step-by-step instructions that are designed to help you get a solid understanding of how to manage and secure ML workloads in the cloud. As you progress through the chapters, you'll discover how to use several container and serverless solutions when training and deploying TensorFlow and PyTorch deep learning models on AWS. You'll also delve into proven cost optimization techniques as well as data privacy and model privacy preservation strategies in detai ...
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition
Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow, 3rd Edition

Through a recent series of breakthroughs, deep learning has boosted the entire field of machine learning. Now, even programmers who know close to nothing about this technology can use simple, efficient tools to implement programs capable of learning from data. This bestselling book uses concrete examples, minimal theory, and production-ready Python frameworks (Scikit-Learn, Keras, and TensorFlow) to help you gain an intuitive understanding of the concepts and tools for building intelligent systems. With this updated third edition, author Aurelien Geron explores a range of techniques, starting with simple linear regression and progressing to deep neural networks. Numerous code examples and exercises throughout the book help you apply what you've learned. Programming experience is all you need to get started. ...
Machine Learning Techniques for Text
Machine Learning Techniques for Text

With the ever-increasing demand for machine learning and programming professionals, it's prime time to invest in the field. This book will help you in this endeavor, focusing specifically on text data and human language by steering a middle path among the various textbooks that present complicated theoretical concepts or focus disproportionately on Python code. A good metaphor this work builds upon is the relationship between an experienced craftsperson and their trainee. Based on the current problem, the former picks a tool from the toolbox, explains its utility, and puts it into action. This approach will help you to identify at least one practical use for each method or technique presented. The content unfolds in ten chapters, each discussing one specific case study. For this reason, the book is solution-oriented. It's accompanied by Python code in the form of Jupyter notebooks to help you obtain hands-on experience. A recurring pattern in the chapters of this book is helping you ...
The Art of Mac Malware
The Art of Mac Malware

Defenders must fully understand how malicious software works if they hope to stay ahead of the increasingly sophisticated threats facing Apple products today. The Art of Mac Malware: The Guide to Analyzing Malicious Software is a comprehensive handbook to cracking open these malicious programs and seeing what's inside. Discover the secrets of nation state backdoors, destructive ransomware, and subversive cryptocurrency miners as you uncover their infection methods, persistence strategies, and insidious capabilities. Then work with and extend foundational reverse-engineering tools to extract and decrypt embedded strings, unpack protected Mach-O malware, and even reconstruct binary code. Next, using a debugger, you'll execute the malware, instruction by instruction, to discover exactly how it operates. In the book's final section, you'll put these lessons into practice by analyzing a complex Mac malware specimen on your own. A former NSA hacker and current leader in t ...
Natural Language Processing with TensorFlow, 2nd Edition
Natural Language Processing with TensorFlow, 2nd Edition

Learning how to solve natural language processing (NLP) problems is an important skill to master due to the explosive growth of data combined with the demand for machine learning solutions in production. Natural Language Processing with TensorFlow, Second Edition, will teach you how to solve common real-world NLP problems with a variety of deep learning model architectures. The book starts by getting readers familiar with NLP and the basics of TensorFlow. Then, it gradually teaches you different facets of TensorFlow 2.x. In the following chapters, you then learn how to generate powerful word vectors, classify text, generate new text, and generate image captions, among other exciting use-cases of real-world NLP. TensorFlow has evolved to be an ecosystem that supports a machine learning workflow through ingesting and transforming data, building models, monitoring, and productionization. We will then read text directly from files and perform the required transformations through a Te ...
Machine Learning for Streaming Data with Python
Machine Learning for Streaming Data with Python

Streaming data is the new top technology to watch out for in the field of data science and machine learning. As business needs become more demanding, many use cases require real-time analysis as well as real-time machine learning. This book will help you to get up to speed with data analytics for streaming data and focus strongly on adapting machine learning and other analytics to the case of streaming data. You will first learn about the architecture for streaming and real-time machine learning. Next, you will look at the state-of-the-art frameworks for streaming data like River. Later chapters will focus on various industrial use cases for streaming data like Online Anomaly Detection and others. As you progress, you will discover various challenges and learn how to mitigate them. In addition to this, you will learn best practices that will help you use streaming data to generate real-time insights. By the end of this book, you will have gained the confidence you need to stream ...
Distributed Machine Learning with Python
Distributed Machine Learning with Python

Reducing time cost in machine learning leads to a shorter waiting time for model training and a faster model updating cycle. Distributed machine learning enables machine learning practitioners to shorten model training and inference time by orders of magnitude. With the help of this practical guide, you'll be able to put your Python development knowledge to work to get up and running with the implementation of distributed machine learning, including multi-node machine learning systems, in no time. You'll begin by exploring how distributed systems work in the machine learning area and how distributed machine learning is applied to state-of-the-art deep learning models. As you advance, you'll see how to use distributed systems to enhance machine learning model training and serving speed. You'll also get to grips with applying data parallel and model parallel approaches before optimizing the in-parallel model training and serving pipeline in local clusters or cloud environments. By the en ...
      Next →
Reproduction of site books is authorized only for informative purposes and strictly for personal, private use.
Only Direct Download
IT eBooks Group © 2011-2023