Quantum Machine Learning with PythonQuickly scale up to Quantum computing and Quantum machine learning foundations and related mathematics and expose them to different use cases that can be solved through Quantum based algorithms.This book explains Quantum Computing, which leverages the Quantum mechanical properties sub-atomic particles. It also examines Quantum machine learning, which can help solve some of the most challenging problems in forecasting, financial modeling, genomics, cybersecurity, supply chain logistics, cryptography among others.
You'll start by reviewing the fundamental concepts of Quantum Computing, such as Dirac Notations, Qubits, and Bell state, followed by postulates and mathematical foundations of Quantum Computing. Once the foundation base is set, you'll delve deep into Quantum based algorithms including Quantum Fourier transform, phase estimation, and HHL (Harrow-Hassidim-Lloyd) among others.
You'll then be introduced to Quantum machine learning and Quantum deep learning-based algorithms, ...
Visualizing Data in R 4Master the syntax for working with R's plotting functions in graphics and stats in this easy reference to formatting plots. The approach in Visualizing Data in R 4 toward the application of formatting in ggplot() will follow the structure of the formatting used by the plotting functions in graphics and stats. This book will take advantage of the new features added to R 4 where appropriate including a refreshed color palette for charts, Cairo graphics with more fonts/symbols, and improved performance from grid graphics including ggplot 2 rendering speed.
Visualizing Data in R 4 starts with an introduction and then is split into two parts and six appendices. Part I covers the function plot() and the ancillary functions you can use with plot(). You'll also see the functions par() and layout(), providing for multiple plots on a page. Part II goes over the basics of using the functions qplot() and ggplot() in the package ggplot2. The default plots generated by the functions qplot() and g ...
Designing Cloud Data PlatformsCentralized data warehouses, the long-time defacto standard for housing data for analytics, are rapidly giving way to multi-faceted cloud data platforms. Companies that embrace modern cloud data platforms benefit from an integrated view of their business using all of their data and can take advantage of advanced analytic practices to drive predictions and as yet unimagined data services. Designing Cloud Data Platforms is a hands-on guide to envisioning and designing a modern scalable data platform that takes full advantage of the flexibility of the cloud. As you read, you'll learn the core components of a cloud data platform design, along with the role of key technologies like Spark and Kafka Streams. You'll also explore setting up processes to manage cloud-based data, keep it secure, and using advanced analytic and BI tools to analyze it.
Well-designed pipelines, storage systems, and APIs eliminate the complicated scaling and maintenance required with on-prem data centers. Once you ...
Automated Machine Learning with Microsoft AzureAutomated Machine Learning with Microsoft Azure helps you to build high-performing, accurate machine learning models in record time. It allows anyone to easily harness the power of artificial intelligence and increase the productivity and profitability of your business. With a series of clicks on a guided user interface (GUI), novices and seasoned data scientists alike can train and deploy machine learning solutions to production with ease.
This book will teach you how to use Azure AutoML with both the GUI as well as the AzureML Python software development kit (SDK) in a careful, step-by-step way. First, you'll learn how to prepare data, train models, and register them to your Azure Machine Learning workspace. You'll then discover how to take those models and use them to create both automated batch solutions using machine learning pipelines and real-time scoring solutions using Azure Kubernetes Service (AKS). Finally, you will be able to use AutoML on your own data to not only train ...
Python Notes for ProfessionalsThe Python Notes for Professionals book is compiled from Stack Overflow Documentation, the content is written by the beautiful people at Stack Overflow. ...
Data Structures and AlgorithmsData Structures and Algorithms (DSA) features implementations of data structures and algorithms that are not implemented in any version of .NET.
This book is the result of a series of emails sent back and forth between the two authors during the development of a library for the .NET framework of the same name.
A key factor of this book and its associated implementations is that all algorithms were designed by us, using the theory of the algorithm in question as a guideline.
The book use's pseudo code to describe the solutions that we have created so that it can be easily ported to many imperative OO languages like C#, C++, and Java (amongst others). ...
Robust PythonDoes it seem like your Python projects are getting bigger and bigger? Are you feeling the pain as your codebase expands and gets tougher to debug and maintain? Python is an easy language to learn and use, but that also means systems can quickly grow beyond comprehension. Thankfully, Python has features to help developers overcome maintainability woes.
In this practical book, author Patrick Viafore shows you how to use Python's type system to the max. You'll look at user-defined types, such as classes and enums, and Python's type hinting system. You'll also learn how to make Python extensible and how to use a comprehensive testing strategy as a safety net. With these tips and techniques, you'll write clearer and more maintainable code.
Learn why types are essential in modern development ecosystems; Understand how type choices such as classes, dictionaries, and enums reflect specific intents; Make Python extensible for the future without adding bloat; Use popular Python tools to in ...
Tableau Desktop Pocket ReferenceIn a crowded field of data visualization and analytics tools, Tableau Desktop has emerged as the clear leader. This is partly due to its ease of use, but once you dive into Tableau's extensive feature set, you'll understand just how powerful and flexible this software can be for your business or organization.
With this handy pocket reference, author Ryan Sleeper (Innovative Tableau) shows you how to translate the vast amounts of data into useful information. Tableau has done an amazing job of making valuable insights accessible to analysts and executives who would otherwise need to rely on IT. This book quickly guides you through Tableau Desktop's learning curve.
You'll learn: How to shape data for use with Tableau Desktop; How to create the most effective chart types; Core concepts including discrete versus continuous; Must-know technical features including filters, parameters, and sets; Key syntax for creating the most useful analyses; How to bring it all together with dashboar ...
TensorFlow 2 Pocket ReferenceThis easy-to-use reference for TensorFlow 2 design patterns in Python will help you make informed decisions for various use cases. Author KC Tung addresses common topics and tasks in enterprise data science and machine learning practices rather than focusing on TensorFlow itself.
When and why would you feed training data as using NumPy or a streaming dataset? How would you set up cross-validations in the training process? How do you leverage a pretrained model using transfer learning? How do you perform hyperparameter tuning? Pick up this pocket reference and reduce the time you spend searching through options for your TensorFlow use cases.
Understand best practices in TensorFlow model patterns and ML workflows; Use code snippets as templates in building TensorFlow models and workflows; Save development time by integrating prebuilt models in TensorFlow Hub; Make informed design choices about data ingestion, training paradigms, model saving, and inferencing; Address common scenari ...
Advanced Algorithms and Data StructuresAs a software engineer, you'll encounter countless programming challenges that initially seem confusing, difficult, or even impossible. Don't despair! Many of these "new" problems already have well-established solutions. Advanced Algorithms and Data Structures teaches you powerful approaches to a wide range of tricky coding challenges that you can adapt and apply to your own applications. Providing a balanced blend of classic, advanced, and new algorithms, this practical guide upgrades your programming toolbox with new perspectives and hands-on techniques.
Can you improve the speed and efficiency of your applications without investing in new hardware? Well, yes, you can: Innovations in algorithms and data structures have led to huge advances in application performance. Pick up this book to discover a collection of advanced algorithms that will make you a more effective developer.
Advanced Algorithms and Data Structures introduces a collection of algorithms for complex programming ...