Text Analytics with PythonDerive useful insights from your data using Python. You will learn both basic and advanced concepts, including text and language syntax, structure, and semantics. You will focus on algorithms and techniques, such as text classification, clustering, topic modeling, and text summarization.
Text Analytics with Python teaches you the techniques related to natural language processing and text analytics, and you will gain the skills to know which technique is best suited to solve a particular problem. You will look at each technique and algorithm with both a bird's eye view to understand how it can be used as well as with a microscopic view to understand the mathematical concepts and to implement them to solve your own problems.
Understand the major concepts and techniques of natural language processing (NLP) and text analytics, including syntax and structure; Build a text classification system to categorize news articles, analyze app or game reviews using topic modeling and text summa ...
Applied Text Analysis with PythonThe programming landscape of natural language processing has changed dramatically in the past few years. Machine learning approaches now require mature tools like Python's scikit-learn to apply models to text at scale. This practical guide shows programmers and data scientists who have an intermediate-level understanding of Python and a basic understanding of machine learning and natural language processing how to become more proficient in these two exciting areas of data science.
This book presents a concise, focused, and applied approach to text analysis with Python, and covers topics including text ingestion and wrangling, basic machine learning on text, classification for text analysis, entity resolution, and text visualization. Applied Text Analysis with Python will enable you to design and develop language-aware data products.
You'll learn how and why machine learning algorithms make decisions about language to analyze text; how to ingest, wrangle, and preprocess language d ...
Data Wrangling with PythonHow do you take your data analysis skills beyond Excel to the next level? By learning just enough Python to get stuff done. This hands-on guide shows non-programmers like you how to process information that's initially too messy or difficult to access. You don't need to know a thing about the Python programming language to get started.
Through various step-by-step exercises, you'll learn how to acquire, clean, analyze, and present data efficiently. You'll also discover how to automate your data process, schedule file- editing and clean-up tasks, process larger datasets, and create compelling stories with data you obtain. ...
Bioinformatics with Python CookbookIf you are either a computational biologist or a Python programmer, you will probably relate to the expression "explosive growth, exciting times". Python is arguably the main programming language for big data, and the deluge of data in biology, mostly from genomics and proteomics, makes bioinformatics one of the most exciting fields in data science.
Using the hands-on recipes in this book, you'll be able to do practical research and analysis in computational biology with Python. We cover modern, next-generation sequencing libraries and explore real-world examples on how to handle real data. The main focus of the book is the practical application of bioinformatics, but we also cover modern programming techniques and frameworks to deal with the ever increasing deluge of bioinformatics data. ...
Introduction to Machine Learning with PythonMachine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.
You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.
Fundamental concepts and applications of machine learning; Advantages and shortcomings of widely used machine learning algorithms; How to represent data processed by machine learning, including which data aspects to fo ...
Data-oriented Development with AngularJSAngularJS is one of the most popular JavaScript frameworks used to write single page applications and is suitable for developing large-scale enterprise applications. With Firebase, you can easily store and sync data in real time. It has libraries for all the major web and mobile platforms (including AngularJS) and bindings for the most popular frameworks (such as Node.js).
Data-oriented Development with AngularJS is a systematic learning guide that covers important AngularJS concepts such as data binding, dependency injection, directives, and so on. It also covers the basics of Firebase and three-way data binding with AngularFire. You'll be able to create a small project and build a real-time application using Firebase and AngularJS. This project uses most of the concepts and best practices learned in the book so that you can apply the very same principles in real-world AngularJS development. ...
Learn Data Analysis with PythonGet started using Python in data analysis with this compact practical guide. This book includes three exercises and a case study on getting data in and out of Python code in the right format. Learn Data Analysis with Python also helps you discover meaning in the data using analysis and shows you how to visualize it.
Each lesson is, as much as possible, self-contained to allow you to dip in and out of the examples as your needs dictate. If you are already using Python for data analysis, you will find a number of things that you wish you knew how to do in Python. You can then take these techniques and apply them directly to your own projects.
If you aren't using Python for data analysis, this book takes you through the basics at the beginning to give you a solid foundation in the topic. As you work your way through the book you will have a better of idea of how to use Python for data analysis when you are finished. ...
Mastering Python ForensicsDigital forensic analysis is the process of examining and extracting data digitally and examining it. Python has the combination of power, expressiveness, and ease of use that makes it an essential complementary tool to the traditional, off-the-shelf digital forensic tools.
This book will teach you how to perform forensic analysis and investigations by exploring the capabilities of various Python libraries.
The book starts by explaining the building blocks of the Python programming language, especially ctypes in-depth, along with how to automate typical tasks in file system analysis, common correlation tasks to discover anomalies, as well as templates for investigations. Next, we'll show you cryptographic algorithms that can be used during forensic investigations to check for known files or to compare suspicious files with online services such as VirusTotal or Mobile-Sandbox. ...
Python 3 Object-oriented Programming, 2nd EditionPython 3 is more versatile and easier to use than ever. It runs on all major platforms in a huge array of use cases. Coding in Python minimizes development time and increases productivity in comparison to other languages. Clean, maintainable code is easy to both read and write using Python's clear, concise syntax.
Object-oriented programming is a popular design paradigm in which data and behaviors are encapsulated in such a way that they can be manipulated together. Many modern programming languages utilize the powerful concepts behind object-oriented programming and Python is no exception.
Starting with a detailed analysis of object-oriented analysis and design, you will use the Python programming language to clearly grasp key concepts from the object-oriented paradigm. This book fully explains classes, data encapsulation, inheritance, polymorphism, abstraction, and exceptions with an emphasis on when you can use each principle to develop well-designed software. ...
Advanced Data Analytics Using PythonGain a broad foundation of advanced data analytics concepts and discover the recent revolution in databases such as Neo4j, Elasticsearch, and MongoDB. This book discusses how to implement ETL techniques including topical crawling, which is applied in domains such as high-frequency algorithmic trading and goal-oriented dialog systems. You'll also see examples of machine learning concepts such as semi-supervised learning, deep learning, and NLP. Advanced Data Analytics Using Python also covers important traditional data analysis techniques such as time series and principal component analysis.
After reading this book you will have experience of every technical aspect of an analytics project. You'll get to know the concepts using Python code, giving you samples to use in your own projects.
Work with data analysis techniques such as classification, clustering, regression, and forecasting; Handle structured and unstructured data, ETL techniques, and different kinds of databases such a ...