Energy Efficient ServersEnergy Efficient Servers: Blueprints for Data Center Optimization introduces engineers and IT professionals to the power management technologies and techniques used in energy efficient servers. The book includes a deep examination of different features used in processors, memory, interconnects, I/O devices, and other platform components. It outlines the power and performance impact of these features and the role firmware and software play in initialization and control. Using examples from cloud, HPC, and enterprise environments, the book demonstrates how various power management technologies are utilized across a range of server utilization. It teaches the reader how to monitor, analyze, and optimize their environment to best suit their needs. It shares optimization techniques used by data center administrators and system optimization experts at the world's most advanced data centers. ...
Handbook on Data CentersThis handbook offers a comprehensive review of the state-of-the-art research achievements in the field of data centers. Contributions from international, leading researchers and scholars offer topics in cloud computing, virtualization in data centers, energy efficient data centers, and next generation data center architecture. It also comprises current research trends in emerging areas, such as data security, data protection management, and network resource management in data centers.
Specific attention is devoted to industry needs associated with the challenges faced by data centers, such as various power, cooling, floor space, and associated environmental health and safety issues, while still working to support growth without disrupting quality of service. The contributions cut across various IT data technology domains as a single source to discuss the interdependencies that need to be supported to enable a virtualized, next-generation, energy efficient, economical, and environme ...
D3.js By ExampleThis book will take you through all the concepts of D3.js starting with the most basic ones and progressively building on them in each chapter to expand your knowledge of D3.js.
Starting with obtaining D3.js and creating simple data bindings to non-graphical HTML elements, you will then master the creation of graphical elements from data. You'll discover how to combine those elements into simple visualizations such as bar, line, and scatter charts, as well as more elaborate visualizations such as network diagrams, Sankey diagrams, maps, and choreopleths.
Using practical examples provided, you will quickly get to grips with the features of D3.js and use this learning to create your own spectacular data visualizations with D3.js. ...
Mastering SciPyThe SciPy stack is a collection of open source libraries of the powerful scripting language Python, together with its interactive shells. This environment offers a cutting-edge platform for numerical computation, programming, visualization and publishing, and is used by some of the world's leading mathematicians, scientists, and engineers. It works on any operating system that supports Python and is very easy to install, and completely free of charge! It can effectively transform into a data-processing and system-prototyping environment, directly rivalling MATLAB and Octave.
This book goes beyond a mere description of the different built-in functions coded in the libraries from the SciPy stack. It presents you with a solid mathematical and computational background to help you identify the right tools for each problem in scientific computing and visualization. You will gain an insight into the best practices with numerical methods depending on the amount or type of data, properties o ...
Practical Statistics for Data ScientistsStatistical methods are a key part of of data science, yet very few data scientists have any formal statistics training. Courses and books on basic statistics rarely cover the topic from a data science perspective. This practical guide explains how to apply various statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not.
Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R programming language, and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format.
Why exploratory data analysis is a key preliminary step in data science; How random sampling can reduce bias and yield a higher quality dataset, even with big data; How the principles of experimental design yield definitive answers to questions; How to use regression to estimate outcomes and detect anomalies; Key classification techni ...
Python Testing with pytestFor Python-based projects, pytest is the undeniable choice to test your code if you're looking for a full-featured, API-independent, flexible, and extensible testing framework. With a full-bodied fixture model that is unmatched in any other tool, the pytest framework gives you powerful features such as assert rewriting and plug-in capability—with no boilerplate code.
With simple step-by-step instructions and sample code, this book gets you up to speed quickly on this easy-to-learn and robust tool. Write short, maintainable tests that elegantly express what you're testing. Add powerful testing features and still speed up test times by distributing tests across multiple processors and running tests in parallel. Use the built-in assert statements to reduce false test failures by separating setup and test failures. Test error conditions and corner cases with expected exception testing, and use one test to run many test cases with parameterized testing. Extend pytest with plugins, conn ...
Test-Driven Development with Python, 2nd EditionBy taking you through the development of a real web application from beginning to end, the second edition of this hands-on guide demonstrates the practical advantages of test-driven development (TDD) with Python. You'll learn how to write and run tests before building each part of your app, and then develop the minimum amount of code required to pass those tests. The result? Clean code that works.
In the process, you'll learn the basics of Django, Selenium, Git, jQuery, and Mock, along with current web development techniques. If you're ready to take your Python skills to the next level, this book—updated for Python 3.6—clearly demonstrates how TDD encourages simple designs and inspires confidence.
Dive into the TDD workflow, including the unit test/code cycle and refactoring; Use unit tests for classes and functions, and functional tests for user interactions within the browser; Learn when and how to use mock objects, and the pros and cons of isolated vs. integrated tests; Te ...
Interactive Data Visualization for the Web, 2nd EditionCreate and publish your own interactive data visualization projects on the web—even if you have little or no experience with data visualization or web development. It's inspiring and fun with this friendly, accessible, and practical hands-on introduction. This fully updated and expanded second edition takes you through the fundamental concepts and methods of D3, the most powerful JavaScript library for expressing data visually in a web browser.
Ideal for designers with no coding experience, reporters exploring data journalism, and anyone who wants to visualize and share data, this step-by-step guide will also help you expand your web programming skills by teaching you the basics of HTML, CSS, JavaScript, and SVG.
Learn D3 4.x—the latest D3 version—with downloadable code and over 140 examples; Create bar charts, scatter plots, pie charts, stacked bar charts, and force-directed graphs; Use smooth, animated transitions to show changes in your data; Introduce interactivity to h ...
Reinforcement LearningMaster reinforcement learning, a popular area of machine learning, starting with the basics: discover how agents and the environment evolve and then gain a clear picture of how they are inter-related. You'll then work with theories related to reinforcement learning and see the concepts that build up the reinforcement learning process.
Reinforcement Learning discusses algorithm implementations important for reinforcement learning, including Markov's Decision process and Semi Markov Decision process. The next section shows you how to get started with Open AI before looking at Open AI Gym. You'll then learn about Swarm Intelligence with Python in terms of reinforcement learning.
The last part of the book starts with the TensorFlow environment and gives an outline of how reinforcement learning can be applied to TensorFlow. There's also coverage of Keras, a framework that can be used with reinforcement learning. Finally, you'll delve into Google's Deep Mind and see scenarios where rein ...
Learn Computer Science with SwiftMaster the basics of solving logic puzzles, and creating algorithms using Swift on Apple platforms. This book is based on the curriculum currently being used in common computer classes. You'll learn to automate algorithmic processes that scale using Swift in the context of iOS, macOS, tvOS, and watchOS.
Begin by understanding how to think computationally: to formulate a computational problem and recognize patterns and ways to validate it. Then jump ahead past the abstractions and conceptual work into using code snippets to build frameworks and write code using Xcode and Swift. Once you have frameworks in place, you'll learn to use algorithms and structure data. Finally, you'll see how to bring people into what you've built through a useable UI and how UI and code relate. ...