Practical Quantum Computing for DevelopersWrite algorithms and program in the new field of quantum computing. This book covers major topics such as the physical components of a quantum computer: qubits, entanglement, logic gates, circuits, and how they differ from a traditional computer. Also, Practical Quantum Computing for Developers discusses quantum computing in the cloud using IBM Q Experience including: the composer, quantum scores, experiments, circuits, simulators, real quantum devices, and more. You'll be able to run experiments in the cloud on a real quantum device.
Furthermore, this book shows you how to do quantum programming using the QISKit (Quantum Information Software Kit), Python SDK, and other APIs such as QASM (Quantum Assembly). You'll learn to write code using these languages and execute it against simulators (local or remote) or a real quantum computer provided by IBM's Q Experience. Finally, you'll learn the current quantum algorithms for entanglement, random number generation, linear search, integer ...
Learn Blockchain Programming with JavaScriptLearn Blockchain Programming with JavaScript begins by giving you a clear understanding of what a blockchain technology is. You'll then set up an environment to build your very own blockchain and learn to add various functionalities to it. By adding functionalities to your blockchain such as the ability to mine new blocks, create transactions, and secure your blockchain through a Proof of Work you will gain an in-depth understanding of how blockchain technology functions.
As you make your way through the chapters, you'll learn how to build an API server to interact with your blockchain and how to host your blockchain on a decentralized network. You'll also build a consensus algorithm and use it to verify data and keep the entire blockchain network synchronized. In the concluding chapters, you'll finish building your blockchain prototype and gain a thorough understanding of why blockchain technology is so secure and valuable.
By the end of this book, you'll understand how decentra ...
Machine Learning Using R, 2nd EditionExamine the latest technological advancements in building a scalable machine-learning model with big data using R. This second edition shows you how to work with a machine-learning algorithm and use it to build a ML model from raw data. You will see how to use R programming with TensorFlow, thus avoiding the effort of learning Python if you are only comfortable with R.
As in the first edition, the authors have kept the fine balance of theory and application of machine learning through various real-world use-cases which gives you a comprehensive collection of topics in machine learning. New chapters in this edition cover time series models and deep learning.
Understand machine learning algorithms using R; Master the process of building machine-learning models; Cover the theoretical foundations of machine-learning algorithms; See industry focused real-world use cases; Tackle time series modeling in R; Apply deep learning using Keras and TensorFlow in R. ...
Python: Advanced Guide to Artificial IntelligenceThis Learning Path is your complete guide to quickly getting to grips with popular machine learning algorithms. You'll be introduced to the most widely used algorithms in supervised, unsupervised, and semi-supervised machine learning, and learn how to use them in the best possible manner. Ranging from Bayesian models to the MCMC algorithm to Hidden Markov models, this Learning Path will teach you how to extract features from your dataset and perform dimensionality reduction by making use of Python-based libraries.
You'll bring the use of TensorFlow and Keras to build deep learning models, using concepts such as transfer learning, generative adversarial networks, and deep reinforcement learning. Next, you'll learn the advanced features of TensorFlow1.x, such as distributed TensorFlow with TF clusters, deploy production models with TensorFlow Serving. You'll implement different techniques related to object classification, object detection, image segmentation, and more. ...
Extreme CThere's a lot more to C than knowing the language syntax. The industry looks for developers with a rigorous, scientific understanding of the principles and practices. Extreme C will teach you to use C's advanced low-level power to write effective, efficient systems. This intensive, practical guide will help you become an expert C programmer.
Building on your existing C knowledge, you will master preprocessor directives, macros, conditional compilation, pointers, and much more. You will gain new insight into algorithm design, functions, and structures. You will discover how C helps you squeeze maximum performance out of critical, resource-constrained applications.
C still plays a critical role in 21st-century programming, remaining the core language for precision engineering, aviations, space research, and more. This book shows how C works with Unix, how to implement OO principles in C, and fully covers multi-processing.
In Extreme C, Amini encourages you to think, question, ap ...
Mastering Machine Learning Algorithms, 2nd EditionMastering Machine Learning Algorithms, 2nd Edition helps you harness the real power of machine learning algorithms in order to implement smarter ways of meeting today's overwhelming data needs. This newly updated and revised guide will help you master algorithms used widely in semi-supervised learning, reinforcement learning, supervised learning, and unsupervised learning domains.
You will use all the modern libraries from the Python ecosystem - including NumPy and Keras - to extract features from varied complexities of data. Ranging from Bayesian models to the Markov chain Monte Carlo algorithm to Hidden Markov models, this machine learning book teaches you how to extract features from your dataset, perform complex dimensionality reduction, and train supervised and semi-supervised models by making use of Python-based libraries such as scikit-learn. You will also discover practical applications for complex techniques such as maximum likelihood estimation, Hebbian learning, and ensem ...
MySQL 8 Query Performance TuningIdentify, analyze, and improve poorly performing queries that damage user experience and lead to lost revenue for your business. This book will help you make query tuning an integral part of your daily routine through a multi-step process that includes monitoring of execution times, identifying candidate queries for optimization, analyzing their current performance, and improving them to deliver results faster and with less overhead. Author Jesper Krogh systematically discusses each of these steps along with the data sources and the tools used to perform them.
MySQL 8 Query Performance Tuning aims to help you improve query performance using a wide range of strategies. You will know how to analyze queries using both the traditional EXPLAIN command as well as the new EXPLAIN ANALYZE tool. You also will see how to use the Visual Explain feature to provide a visually-oriented view of an execution plan. Coverage of indexes includes indexing strategies and index statistics, and you will ...
Next-Generation Machine Learning with SparkAccess real-world documentation and examples for the Spark platform for building large-scale, enterprise-grade machine learning applications.
The past decade has seen an astonishing series of advances in machine learning. These breakthroughs are disrupting our everyday life and making an impact across every industry.
Next-Generation Machine Learning with Spark provides a gentle introduction to Spark and Spark MLlib and advances to more powerful, third-party machine learning algorithms and libraries beyond what is available in the standard Spark MLlib library. By the end of this book, you will be able to apply your knowledge to real-world use cases through dozens of practical examples and insightful explanations.
Be introduced to machine learning, Spark, and Spark MLlib 2.4.x; Achieve lightning-fast gradient boosting on Spark with the XGBoost4J-Spark and LightGBM libraries; Detect anomalies with the Isolation Forest algorithm for Spark; Use the Spark NLP and Stanford CoreNLP lib ...
Graph AlgorithmsLearn how graph algorithms can help you leverage relationships within your data to develop intelligent solutions and enhance your machine learning models. With this practical guide,
developers and data scientists will discover how graph analytics deliver value, whether they're used for building dynamic network models or forecasting real-world behavior.
Mark Needham and Amy Hodler from Neo4j explain how graph algorithms describe complex structures and reveal difficult-to-find patterns - from finding vulnerabilities and bottlenecks to detecting communities and improving machine learning predictions. You'll walk through hands-on examples that show you how to use graph algorithms in Apache Spark and Neo4j, two of the most common choices for graph analytics.
Learn how graph analytics reveal more predictive elements in today's data; Understand how popular graph algorithms work and how they're applied; Use sample code and tips from more than 20 graph algorithm examples; Learn which alg ...
Machine Learning with R, the tidyverse, and mlrMachine learning (ML) is a collection of programming techniques for discovering relationships in data. With ML algorithms, you can cluster and classify data for tasks like making recommendations or fraud detection and make predictions for sales trends, risk analysis, and other forecasts. Once the domain of academic data scientists, machine learning has become a mainstream business process, and tools like the easy-to-learn R programming language put high-quality data analysis in the hands of any programmer. Machine Learning with R, the tidyverse, and mlr teaches you widely used ML techniques and how to apply them to your own datasets using the R programming language and its powerful ecosystem of tools. This book will get you started!
Machine Learning with R, the tidyverse, and mlr gets you started in machine learning using R Studio and the awesome mlr machine learning package. This practical guide simplifies theory and avoids needlessly complicated statistics or math. All core ML tec ...