Python Machine Learning By Example, 3rd EditionPython Machine Learning By Example, 3rd Edition serves as a comprehensive gateway into the world of machine learning (ML).
With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements.
At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries.
Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques ...
Machine Learning for Algorithmic Trading, 2nd EditionThe explosive growth of digital data has boosted the demand for expertise in trading strategies that use machine learning (ML). This thoroughly revised and expanded 2nd edition enables you to build and evaluate sophisticated supervised, unsupervised, and reinforcement learning models.
This edition introduces end-to-end machine learning for the trading workflow, from the idea and feature engineering to model optimization, strategy design, and backtesting. It illustrates this workflow using examples that range from linear models and tree-based ensembles to deep-learning techniques from the cutting edge of the research frontier.
This revised version shows how to work with market, fundamental, and alternative data, such as tick data, minute and daily bars, SEC filings, earnings call transcripts, financial news, or satellite images to generate tradeable signals. It illustrates how to engineer financial features or alpha factors that enable a machine learning model to predict returns f ...
Beginning Mathematica and Wolfram for Data ScienceEnhance your data science programming and analysis with the Wolfram programming language and Mathematica, an applied mathematical tools suite. The book will introduce you to the Wolfram programming language and its syntax, as well as the structure of Mathematica and its advantages and disadvantages.
You'll see how to use the Wolfram language for data science from a theoretical and practical perspective. Learning this language makes your data science code better because it is very intuitive and comes with pre-existing functions that can provide a welcoming experience for those who use other programming languages.
You'll cover how to use Mathematica where data management and mathematical computations are needed. Along the way you'll appreciate how Mathematica provides a complete integrated platform: it has a mixed syntax as a result of its symbolic and numerical calculations allowing it to carry out various processes without superfluous lines of code. You'll learn to use its noteb ...
Deep Learning with Swift for TensorFlowDiscover more insight about deep learning algorithms with Swift for TensorFlow. The Swift language was designed by Apple for optimized performance and development whereas TensorFlow library was designed by Google for advanced machine learning research. Swift for TensorFlow is a combination of both with support for modern hardware accelerators and more. This book covers the deep learning concepts from fundamentals to advanced research. It also introduces the Swift language for beginners in programming. This book is well suited for newcomers and experts in programming and deep learning alike. After reading this book you should be able to program various state-of-the-art deep learning algorithms yourself.
The book covers foundational concepts of machine learning. It also introduces the mathematics required to understand deep learning. Swift language is introduced such that it allows beginners and researchers to understand programming and easily transit to Swift for TensorFlow, respecti ...
Reinforcement LearningReinforcement learning (RL) will deliver one of the biggest breakthroughs in AI over the next decade, enabling algorithms to learn from their environment to achieve arbitrary goals. This exciting development avoids constraints found in traditional machine learning (ML) algorithms. This practical book shows data science and AI professionals how to learn by reinforcement and enable a machine to learn by itself.
Author Phil Winder of Winder Research covers everything from basic building blocks to state-of-the-art practices. You'll explore the current state of RL, focus on industrial applications, learn numerous algorithms, and benefit from dedicated chapters on deploying RL solutions to production. This is no cookbook; doesn't shy away from math and expects familiarity with ML.
Learn what RL is and how the algorithms help solve problems; Become grounded in RL fundamentals including Markov decision processes, dynamic programming, and temporal difference learning; Dive deep into a ran ...
The Node.js HandbookNode.js is built on top of the Google Chrome V8 JavaScript engine, and it's mainly used to create web servers - but it's not limited to that.
The Node.js Handbook follows the 80/20 rule: learn in 20% of the time the 80% of a topic. The author find this approach gives a well-rounded overview. ...
Computer Vision Using Deep LearningOrganizations spend huge resources in developing software that can perform the way a human does. Image classification, object detection and tracking, pose estimation, facial recognition, and sentiment estimation all play a major role in solving computer vision problems.
This book will bring into focus these and other deep learning architectures and techniques to help you create solutions using Keras and the TensorFlow library. You'll also review mutliple neural network architectures, including LeNet, AlexNet, VGG, Inception, R-CNN, Fast R-CNN, Faster R-CNN, Mask R-CNN, YOLO, and SqueezeNet and see how they work alongside Python code via best practices, tips, tricks, shortcuts, and pitfalls. All code snippets will be broken down and discussed thoroughly so you can implement the same principles in your respective environments.
Computer Vision Using Deep Learning offers a comprehensive yet succinct guide that stitches DL and CV together to automate operations, reduce human interven ...
TensorFlow 2.x in the Colaboratory CloudUse TensorFlow 2.x with Google's Colaboratory (Colab) product that offers a free cloud service for Python programmers. Colab is especially well suited as a platform for TensorFlow 2.x deep learning applications. You will learn Colab's default install of the most current TensorFlow 2.x along with Colab's easy access to on-demand GPU hardware acceleration in the cloud for fast execution of deep learning models. This book offers you the opportunity to grasp deep learning in an applied manner with the only requirement being an Internet connection. Everything else - Python, TensorFlow 2.x, GPU support, and Jupyter Notebooks - is provided and ready to go from Colab.
The book begins with an introduction to TensorFlow 2.x and the Google Colab cloud service. You will learn how to provision a workspace on Google Colab and build a simple neural network application. From there you will progress into TensorFlow datasets and building input pipelines in support of modeling and testing. You will fi ...
The Vue.js HandbookVue.js is a very impressive project. It's a very popular JavaScript framework, one that's experiencing a huge growth. It is simple, tiny and very performant.
The Vue.js Handbook follows the 80/20 rule: learn in 20% of the time the 80% of a topic. The author find this approach gives a well-rounded overview. ...
Machine Learning for KidsArtificial intelligence (AI) is the ability of computers to simulate human thinking. Machine learning (ML) is one of the building blocks of AI. It's based on the idea that computers can be taught to do things on their own from the data and feedback you give them.
Machine Learning for Kids consists of this book and a kid-friendly companion website paired with the educational coding platform, Scratch. Together, they provide an easy-to-use guided programming environment for adding ML capabilities to your own AI projects!
As you work through each chapter you'll discover how ML systems can be taught to recognize text, images, numbers, and sounds, and different ways of training ML models to improve their accuracy. You'll turn your models into fun computer games and apps (and see what happens when an AI system gets confused by bad data) while building:
- A Rock, Paper, Scissors game that knows your hand shapes;
- A smart question-answering chatbot;
- A computer character that reacts ...