Advancing into AnalyticsData analytics may seem daunting, but if you're an experienced Excel user, you have a unique head start. With this hands-on guide, intermediate Excel users will gain a solid understanding of analytics and the data stack. By the time you complete this book, you'll be able to conduct exploratory data analysis and hypothesis testing using a programming language.
Exploring and testing relationships are core to analytics. By using the tools and frameworks in this book, you'll be well positioned to continue learning more advanced data analysis techniques. Author George Mount, founder and CEO of Stringfest Analytics, demonstrates key statistical concepts with spreadsheets, then pivots your existing knowledge about data manipulation into R and Python programming.
This practical book guides you through:
- Foundations of analytics in Excel: Use Excel to test relationships between variables and build compelling demonstrations of important concepts in statistics and analytics;
- From Excel ...
Data Pipelines with Apache AirflowA successful pipeline moves data efficiently, minimizing pauses and blockages between tasks, keeping every process along the way operational. Apache Airflow provides a single customizable environment for building and managing data pipelines, eliminating the need for a hodgepodge collection of tools, snowflake code, and homegrown processes. Using real-world scenarios and examples, Data Pipelines with Apache Airflow teaches you how to simplify and automate data pipelines, reduce operational overhead, and smoothly integrate all the technologies in your stack.
Data pipelines manage the flow of data from initial collection through consolidation, cleaning, analysis, visualization, and more. Apache Airflow provides a single platform you can use to design, implement, monitor, and maintain your pipelines. Its easy-to-use UI, plug-and-play options, and flexible Python scripting make Airflow perfect for any data management task.
Data Pipelines with Apache Airflow teaches you how to build an ...
TensorFlow 2 Pocket ReferenceThis easy-to-use reference for TensorFlow 2 design patterns in Python will help you make informed decisions for various use cases. Author KC Tung addresses common topics and tasks in enterprise data science and machine learning practices rather than focusing on TensorFlow itself.
When and why would you feed training data as using NumPy or a streaming dataset? How would you set up cross-validations in the training process? How do you leverage a pretrained model using transfer learning? How do you perform hyperparameter tuning? Pick up this pocket reference and reduce the time you spend searching through options for your TensorFlow use cases.
Understand best practices in TensorFlow model patterns and ML workflows; Use code snippets as templates in building TensorFlow models and workflows; Save development time by integrating prebuilt models in TensorFlow Hub; Make informed design choices about data ingestion, training paradigms, model saving, and inferencing; Address common scenari ...
Parallel and High Performance ComputingComplex calculations, like training deep learning models or running large-scale simulations, can take an extremely long time. Efficient parallel programming can save hours - or even days - of computing time. Parallel and High Performance Computing shows you how to deliver faster run-times, greater scalability, and increased energy efficiency to your programs by mastering parallel techniques for multicore processor and GPU hardware.
Write fast, powerful, energy efficient programs that scale to tackle huge volumes of data. Using parallel programming, your code spreads data processing tasks across multiple CPUs for radically better performance. With a little help, you can create software that maximizes both speed and efficiency.
Parallel and High Performance Computing offers techniques guaranteed to boost your code's effectiveness. You'll learn to evaluate hardware architectures and work with industry standard tools such as OpenMP and MPI. You'll master the data structures and algor ...
Mastering Tableau 2021, 3rd EditionTableau is one of the leading business intelligence (BI) tools used to solve data analysis challenges. With this book, you will master Tableau's features and offerings in various paradigms of the BI domain.
Updated with fresh topics including Quick Level of Detail expressions, the newest Tableau Server features, Einstein Discovery, and more, this book covers essential Tableau concepts and advanced functionalities. Leveraging Tableau Hyper files and using Prep Builder, you'll be able to perform data preparation and handling easily. You'll gear up to perform complex joins, spatial joins, unions, and data blending tasks using practical examples. Following this, you'll learn how to execute data densification and further explore expert-level examples to help you with calculations, mapping, and visual design using Tableau extensions. You'll also learn about improving dashboard performance, connecting to Tableau Server and understanding data visualization with examples. Finally, you'll cov ...
Python Object-Oriented Programming, 4th EditionObject-oriented programming (OOP) is a popular design paradigm in which data and behaviors are encapsulated in such a way that they can be manipulated together. Python Object-Oriented Programming, Fourth Edition dives deep into the various aspects of OOP, Python as an OOP language, common and advanced design patterns, and hands-on data manipulation and testing of more complex OOP systems. These concepts are consolidated by open-ended exercises, as well as a real-world case study at the end of every chapter, newly written for this edition. All example code is now compatible with Python 3.9+ syntax and has been updated with type hints for ease of learning.
Steven and Dusty provide a comprehensive, illustrative tour of important OOP concepts, such as inheritance, composition, and polymorphism, and explain how they work together with Python's classes and data structures to facilitate good design. In addition, the book also features an in-depth look at Python's exception handling and how ...
Beginning Azure Cognitive ServicesGet started with Azure Cognitive Services and its APIs that expose machine learning as a service. This book introduces the suite of Azure Cognitive Services and helps you take advantage of the proven machine learning algorithms that have been developed by experts and made available through Cognitive Services, easily integrating those algorithms into your own applications without having to develop the algorithms from scratch. The book also shows you how to use the algorithms provided by Cognitive Services to accelerate data analysis and development within your organization.
The authors begin by introducing the tools and describing the steps needed to invoke libraries to analyze structured and unstructured text, speech, and pictures, and you will learn to create interactive chatbots using the Cognitive Services libraries. Each chapter contains the information you need to implement artificial intelligence (AI) via Azure Cognitive Services in your personal and professional projects. ...
Tableau StrategiesIf you want to increase Tableau's value to your organization, this practical book has your back. Authors Ann Jackson and Luke Stanke guide data analysts through strategies for solving real-world analytics problems using Tableau. Starting with the basics and building toward advanced topics such as multidimensional analysis and user experience, you'll explore pragmatic and creative examples that you can apply to your own data.
Staying competitive today requires the ability to quickly analyze and visualize data and make data-driven decisions. With this guide, data practitioners and leaders alike will learn strategies for building compelling and purposeful visualizations, dashboards, and data products. Every chapter contains the why behind the solution and the technical knowledge you need to make it work.
Use this book as a high-value on-the-job reference guide to Tableau; Visualize different data types and tackle specific data challenges; Create compelling data visualizations, dashb ...
Just Enough RIf your job involves working with data in any manner, you cannot afford to ignore the R revolution! If your domain is called data analysis, analytics, informatics, data science, reporting, business intelligence, data management, big data, or visualization, you just have to learn R as this programming language is a game-changing sledgehammer.
However, if you have looked at a standard text on R or read some of the online discussions, you might feel that there is a steep learning curve of six months or more to grok the language. I will debunk this myth through my book by focusing on practical essentials instead of theory.
If you have programmed in some language in the past (whether that language be SAS, SPSS, C, C++, C#, Java, Python, Perl, Visual Basic, Ruby, Scala, shell scripts, or plain old SQL), even if you are rusty, this book will get you up and running with R in a single day, writing programs for data analysis and visualization. ...
Software TelemetrySoftware Telemetry teaches you best practices for operating and updating telemetry systems. These vital systems trace, log, and monitor infrastructure by observing and analyzing the events generated by the system. This practical guide is filled with techniques you can apply to any size of organization, with troubleshooting techniques for every eventuality, and methods to ensure your compliance with standards like GDPR.
Take advantage of the data generated by your IT infrastructure! Telemetry systems provide feedback on what's happening inside your data center and applications, so you can efficiently monitor, maintain, and audit them. This practical book guides you through instrumenting your systems, setting up centralized logging, doing distributed tracing, and other invaluable telemetry techniques.
Software Telemetry shows you how to efficiently collect, store, and analyze system and application log data so you can monitor and improve your systems. Manage the pillars of observab ...