Introduction to Machine Learning with PythonMachine learning has become an integral part of many commercial applications and research projects, but this field is not exclusive to large companies with extensive research teams. If you use Python, even as a beginner, this book will teach you practical ways to build your own machine learning solutions. With all the data available today, machine learning applications are limited only by your imagination.
You'll learn the steps necessary to create a successful machine-learning application with Python and the scikit-learn library. Authors Andreas Müller and Sarah Guido focus on the practical aspects of using machine learning algorithms, rather than the math behind them. Familiarity with the NumPy and matplotlib libraries will help you get even more from this book.
Fundamental concepts and applications of machine learning; Advantages and shortcomings of widely used machine learning algorithms; How to represent data processed by machine learning, including which data aspects to fo ...
Complete Guide to Open Source Big Data StackSee a Mesos-based big data stack created and the components used. You will use currently available Apache full and incubating systems. The components are introduced by example and you learn how they work together.
In the Complete Guide to Open Source Big Data Stack, the author begins by creating a private cloud and then installs and examines Apache Brooklyn. After that, he uses each chapter to introduce one piece of the big data stack - sharing how to source the software and how to install it. You learn by simple example, step by step and chapter by chapter, as a real big data stack is created. The book concentrates on Apache-based systems and shares detailed examples of cloud storage, release management, resource management, processing, queuing, frameworks, data visualization, and more.
Install a private cloud onto the local cluster using Apache cloud stack; Source, install, and configure Apache: Brooklyn, Mesos, Kafka, and Zeppelin; See how Brooklyn can be used to install Mule ...
Databases for Small BusinessThis book covers the practical aspects of database design, data cleansing, data analysis, and data protection, among others. The focus is on what you really need to know to create the right database for your small business and to leverage it most effectively to spur growth and revenue.
Databases for Small Business is a practical handbook for entrepreneurs, managers, staff, and professionals in small organizations who are not IT specialists but who recognize the need to ramp up their small organizations' use of data and to round out their own business expertise and office skills with basic database proficiency.
Anna Manning—a data scientist who has worked on database design and data analysis in a computer science university research lab, her own small business, and a nonprofit—walks you through the progression of steps that will enable you to extract actionable intelligence and maximum value from your business data in terms of marketing, sales, customer relations, decision mak ...
Fast Data Processing with Spark, 2nd EditionSpark is a framework used for writing fast, distributed programs. Spark solves similar problems as Hadoop MapReduce does, but with a fast in-memory approach and a clean functional style API. With its ability to integrate with Hadoop and built-in tools for interactive query analysis (Spark SQL), large-scale graph processing and analysis (GraphX), and real-time analysis (Spark Streaming), it can be interactively used to quickly process and query big datasets.
Fast Data Processing with Spark - Second Edition covers how to write distributed programs with Spark. The book will guide you through every step required to write effective distributed programs from setting up your cluster and interactively exploring the API to developing analytics applications and tuning them for your purposes. ...
File Management Made Simple, Windows EditionManaging data is an essential skill that every PC user should have. Surprisingly though, a large number of users--even highly experienced users--exhibit poor file management skills, resulting in frustration and lost data. File Management Made Simple can resolve this by providing you with the skills and best practices needed for creating, managing and protecting your data.
Do any of the following scenarios sound familiar to you? You've downloaded an attachment from your e-mail, but aren't sure where you downloaded it to. You spent an entire evening working on a document only to discover the next morning that you didn't save it to your flash drive like you thought you had? Unfortunately, for a vast number of PC users, scenarios like these are all too common. These situations are not only extremely frustrating for the user, but also tend to discourage them from ever wanting to touch a PC again! However, these problems and others can be easily rectified with this brief, book, by your si ...
Graph Analysis and VisualizationGraph Analysis and Visualization brings graph theory out of the lab and into the real world. Using sophisticated methods and tools that span analysis functions, this guide shows you how to exploit graph and network analytic techniques to enable the discovery of new business insights and opportunities. Published in full color, the book describes the process of creating powerful visualizations using a rich and engaging set of examples from sports, finance, marketing, security, social media, and more. You will find practical guidance toward pattern identification and using various data sources, including Big Data, plus clear instruction on the use of software and programming. The companion website offers data sets, full code examples in Python, and links to all the tools covered in the book.
Science has already reaped the benefit of network and graph theory, which has powered breakthroughs in physics, economics, genetics, and more. This book brings those proven techniques into the worl ...
Learning Haskell Data AnalysisHaskell is trending in the field of data science by providing a powerful platform for robust data science practices. This book provides you with the skills to handle large amounts of data, even if that data is in a less than perfect state. Each chapter in the book helps to build a small library of code that will be used to solve a problem for that chapter. The book starts with creating databases out of existing datasets, cleaning that data, and interacting with databases within Haskell in order to produce charts for publications. It then moves towards more theoretical concepts that are fundamental to introductory data analysis, but in a context of a real-world problem with real-world data. As you progress in the book, you will be relying on code from previous chapters in order to help create new solutions quickly. By the end of the book, you will be able to manipulate, find, and analyze large and small sets of data using your own Haskell libraries. ...
Learn Data Analysis with PythonGet started using Python in data analysis with this compact practical guide. This book includes three exercises and a case study on getting data in and out of Python code in the right format. Learn Data Analysis with Python also helps you discover meaning in the data using analysis and shows you how to visualize it.
Each lesson is, as much as possible, self-contained to allow you to dip in and out of the examples as your needs dictate. If you are already using Python for data analysis, you will find a number of things that you wish you knew how to do in Python. You can then take these techniques and apply them directly to your own projects.
If you aren't using Python for data analysis, this book takes you through the basics at the beginning to give you a solid foundation in the topic. As you work your way through the book you will have a better of idea of how to use Python for data analysis when you are finished. ...
Ruby Data ProcessingGain the basics of Ruby's map, reduce, and select functions and discover how to use them to solve data-processing problems. This compact hands-on book explains how you can encode certain complex programs in 10 lines of Ruby code, an astonishingly small number. You will walk through problems and solutions which are effective because they use map, reduce, and select. As you read Ruby Data Processing, type in the code, run the code, and ponder the results. Tweak the code to test the code and see how the results change.
After reading this book, you will have a deeper understanding of how to break data-processing problems into processing stages, each of which is understandable, debuggable, and composable, and how to combine the stages to solve your data-processing problem. As a result, your Ruby coding will become more efficient and your programs will be more elegant and robust.
Discover Ruby data processing and how to do it using the map, reduce, and select functions; Develop compl ...
Learning Predictive Analytics with RR is statistical software that is used for data analysis. There are two main types of learning from data: unsupervised learning, where the structure of data is extracted automatically; and supervised learning, where a labeled part of the data is used to learn the relationship or scores in a target attribute. As important information is often hidden in a lot of data, R helps to extract that information with its many standard and cutting-edge statistical functions.
This book is packed with easy-to-follow guidelines that explain the workings of the many key data mining tools of R, which are used to discover knowledge from your data. ...