IT eBooks
Download, Read, Use
Introducing Python, 2nd Edition
Introducing Python, 2nd Edition

Easy to understand and fun to read, this updated edition of Introducing Python is ideal for beginning programmers as well as those new to the language. Author Bill Lubanovic takes you from the basics to more involved and varied topics, mixing tutorials with cookbook-style code recipes to explain concepts in Python 3. End-of-chapter exercises help you practice what you've learned. You'll gain a strong foundation in the language, including best practices for testing, debugging, code reuse, and other development tips. This book also shows you how to use Python for applications in business, science, and the arts, using various Python tools and open source packages. ...
Python for DevOps
Python for DevOps

Much has changed in technology over the past decade. Data is hot, the cloud is ubiquitous, and many organizations need some form of automation. Throughout these transformations, Python has become one of the most popular languages in the world. This practical resource shows you how to use Python for everyday Linux systems administration tasks with today's most useful DevOps tools, including Docker, Kubernetes, and Terraform. Learning how to interact and automate with Linux is essential for millions of professionals. Python makes it much easier. With this book, you'll learn how to develop software and solve problems using containers, as well as how to monitor, instrument, load-test, and operationalize your software. Looking for effective ways to "get stuff done" in Python? This is your guide. Python foundations, including a brief introduction to the language; How to automate text, write command-line tools, and automate the filesystem; Linux utilities, package management, build syst ...
Architecture Patterns with Python
Architecture Patterns with Python

As Python continues to grow in popularity, projects are becoming larger and more complex. Many Python developers are taking an interest in high-level software design patterns such as hexagonal/clean architecture, event-driven architecture, and the strategic patterns prescribed by domain-driven design (DDD). But translating those patterns into Python isn't always straightforward. With this hands-on guide, Harry Percival and Bob Gregory from MADE.com introduce proven architectural design patterns to help Python developers manage application complexity - and get the most value out of their test suites. Each pattern is illustrated with concrete examples in beautiful, idiomatic Python, avoiding some of the verbosity of Java and C# syntax. Patterns include: Dependency inversion and its links to ports and adapters (hexagonal/clean architecture); Domain-driven design's distinction between Entities, Value Objects, and Aggregates; Repository and Unit of Work patterns for persistent storag ...
Beginning Game Programming with Pygame Zero
Beginning Game Programming with Pygame Zero

Make fun games while learning to code. Focused on making games rather than teaching programming theory, in this book you're more likely to see code on how gravity affects a missiles trajectory instead of the most efficient way to search through data. Even then the code is kept simple as games should be about playability rather than complex physics. There are links to the official documentation when you need to lookup information that isn't included in the book. Start with a simple text based game to grasp the basics of programming in Python. Then moves on to creating simple graphical games in Pygame Zero. Not only will you learn object oriented programming to make it easier to make more complex games, you'll also work to create your own graphics and sounds. 3D graphics are a little complex. So we focus on 2D games, including spins on some classic boardgames and arcade games. All the games are designed to run on a Raspberry Pi. They will work on any Raspberry Pi, but will also work o ...
AI Crash Course
AI Crash Course

Welcome to the Robot World ... and start building intelligent software now! Through his best-selling video courses, Hadelin de Ponteves has taught hundreds of thousands of people to write AI software. Now, for the first time, his hands-on, energetic approach is available as a book. Starting with the basics before easing you into more complicated formulas and notation, AI Crash Course gives you everything you need to build AI systems with reinforcement learning and deep learning. Five full working projects put the ideas into action, showing step-by-step how to build intelligent software using the best and easiest tools for AI programming, including Python, TensorFlow, Keras, and PyTorch. AI Crash Course teaches everyone to build an AI to work in their applications. Once you've read this book, you're only limited by your imagination. ...
Python Feature Engineering Cookbook
Python Feature Engineering Cookbook

Feature engineering is invaluable for developing and enriching your machine learning models. In this cookbook, you will work with the best tools to streamline your feature engineering pipelines and techniques and simplify and improve the quality of your code. Using Python libraries such as pandas, scikit-learn, Featuretools, and Feature-engine, you'll learn how to work with both continuous and discrete datasets and be able to transform features from unstructured datasets. You will develop the skills necessary to select the best features as well as the most suitable extraction techniques. This book will cover Python recipes that will help you automate feature engineering to simplify complex processes. You'll also get to grips with different feature engineering strategies, such as the box-cox transform, power transform, and log transform across machine learning, reinforcement learning, and natural language processing (NLP) domains. By the end of this book, you'll have discovered ti ...
Practical Statistics for Data Scientists, 2nd Edition
Practical Statistics for Data Scientists, 2nd Edition

Statistical methods are a key part of data science, yet few data scientists have formal statistical training. Courses and books on basic statistics rarely cover the topic from a data science perspective. The second edition of this popular guide adds comprehensive examples in Python, provides practical guidance on applying statistical methods to data science, tells you how to avoid their misuse, and gives you advice on what's important and what's not. Many data science resources incorporate statistical methods but lack a deeper statistical perspective. If you're familiar with the R or Python programming languages and have some exposure to statistics, this quick reference bridges the gap in an accessible, readable format. With this book, you'll learn: Why exploratory data analysis is a key preliminary step in data science; How random sampling can reduce bias and yield a higher-quality dataset, even with big data; How the principles of experimental design yield definitive answers to ...
High Performance Python, 2nd Edition
High Performance Python, 2nd Edition

Your Python code may run correctly, but you need it to run faster. Updated for Python 3, this expanded edition shows you how to locate performance bottlenecks and significantly speed up your code in high-data-volume programs. By exploring the fundamental theory behind design choices, High Performance Python helps you gain a deeper understanding of Python's implementation. How do you take advantage of multicore architectures or clusters? Or build a system that scales up and down without losing reliability? Experienced Python programmers will learn concrete solutions to many issues, along with war stories from companies that use high-performance Python for social media analytics, productionized machine learning, and more. Get a better grasp of NumPy, Cython, and profilers; Learn how Python abstracts the underlying computer architecture; Use profiling to find bottlenecks in CPU time and memory usage; Write efficient programs by choosing appropriate data structures; Speed up matrix ...
Fundamentals of Python Programming
Fundamentals of Python Programming

This book does not attempt to cover all the facets of the Python programming language. Experienced programmers should look elsewhere for books that cover Python in much more detail. The focus here is on introducing programming techniques and developing good habits. To that end, our approach avoids some of the more esoteric features of Python and concentrates on the programming basics that transfer directly to other imperative programming languages such as Java, C#, and C++ . We stick with the basics and explore more advanced features of Python only when necessary to handle the problem at hand. ...
Natural Language Processing with Python and spaCy
Natural Language Processing with Python and spaCy

Natural Language Processing with Python and spaCy will show you how to create NLP applications like chatbots, text-condensing scripts, and order-processing tools quickly and easily. You'll learn how to leverage the spaCy library to extract meaning from text intelligently; how to determine the relationships between words in a sentence (syntactic dependency parsing); identify nouns, verbs, and other parts of speech (part-of-speech tagging); and sort proper nouns into categories like people, organizations, and locations (named entity recognizing). You'll even learn how to transform statements into questions to keep a conversation going. You'll also learn how to: Work with word vectors to mathematically find words with similar meanings; Identify patterns within data using spaCy's built-in displaCy visualizer; Automatically extract keywords from user input and store them in a relational database; Deploy a chatbot app to interact with users over the internet. ...
← Prev       Next →
Reproduction of site books is authorized only for informative purposes and strictly for personal, private use.
Only Direct Download
IT eBooks Group © 2011-2025