Python for Data Mining Quick Syntax ReferenceLearn how to use Python and its structures, how to install Python, and which tools are best suited for data analyst work. This book provides you with a handy reference and tutorial on topics ranging from basic Python concepts through to data mining, manipulating and importing datasets, and data analysis.
Python for Data Mining Quick Syntax Reference covers each concept concisely, with many illustrative examples. You'll be introduced to several data mining packages, with examples of how to use each of them.
The first part covers core Python including objects, lists, functions, modules, and error handling. The second part covers Python's most important data mining packages: NumPy and SciPy for mathematical functions and random data generation, pandas for dataframe management and data import, Matplotlib for drawing charts, and scikitlearn for machine learning.
Install Python and choose a development environment; Understand the basic concepts of object-oriented programming; Imp ...
Practical Quantum Computing for DevelopersWrite algorithms and program in the new field of quantum computing. This book covers major topics such as the physical components of a quantum computer: qubits, entanglement, logic gates, circuits, and how they differ from a traditional computer. Also, Practical Quantum Computing for Developers discusses quantum computing in the cloud using IBM Q Experience including: the composer, quantum scores, experiments, circuits, simulators, real quantum devices, and more. You'll be able to run experiments in the cloud on a real quantum device.
Furthermore, this book shows you how to do quantum programming using the QISKit (Quantum Information Software Kit), Python SDK, and other APIs such as QASM (Quantum Assembly). You'll learn to write code using these languages and execute it against simulators (local or remote) or a real quantum computer provided by IBM's Q Experience. Finally, you'll learn the current quantum algorithms for entanglement, random number generation, linear search, integer ...
Python Flash CardsKeep your coding skills sharp on the go! Python Flash Cards take a tried-and-tested method and give it a programming makeover. Eric Matthes, author of the best-selling Python Crash Course, distills essential Python programming knowledge into this 101-card deck you can use anywhere.
Work through the deck in order or shuffle it up for a new study session every time. You can brush up foundational programming principles and vocabulary like data structures, logical control, and program flow, quiz yourself on Python syntax, and test your skills against exercises and challenges designed to keep you on your toes - all in one sitting.
Don't let your Python training stop at the keyboard. With Python Flash Cards, the power of Python fits in your pocket. ...
Serious PythonSharpen your Python skills as you dive deep into the Python programming language with Serious Python. You'll cover a range of advanced topics like multithreading and memorization, get advice from experts on things like designing APIs and dealing with databases, and learn Python internals to help you gain a deeper understanding of the language itself. Written for developers and experienced programmers, Serious Python brings together over 15 years of Python experience to teach you how to avoid common mistakes, write code more efficiently, and build better programs in less time.
As you make your way through the book's extensive tutorials, you'll learn how to start a project and tackle topics like versioning, layouts, coding style, and automated checks. You'll learn how to package your software for distribution, optimize performance, use the right data structures, define functions efficiently, pick the right libraries, build future-proof programs, and optimize your programs down to the ...
Math Adventures with PythonMath Adventures with Python will show you how to harness the power of programming to keep math relevant and fun. With the aid of the Python programming language, you'll learn how to visualize solutions to a range of math problems as you use code to explore key mathematical concepts like algebra, trigonometry, matrices, and cellular automata.
Once you've learned the programming basics like loops and variables, you'll write your own programs to solve equations quickly, make cool things like an interactive rainbow grid, and automate tedious tasks like factoring numbers and finding square roots. You'll learn how to write functions to draw and manipulate shapes, create oscillating sine waves, and solve equations graphically.
You'll also learn how to: Draw and transform 2D and 3D graphics with matrices; Make colorful designs like the Mandelbrot and Julia sets with complex numbers; Use recursion to create fractals like the Koch snowflake and the Sierpinski triangle; Generate virtual she ...
Expert TwistedExplore Twisted, the Python-based event-driven networking engine, and review several of its most popular application projects. It is written by community leaders who have contributed to many of the projects covered, and share their hard-won insights and experience.
Expert Twisted starts with an introduction to event-driven programming, explaining it in the context of what makes Twisted unique. It shows how Twisted's design emphasizes testability as a solution to common challenges of reliability, debugging, and start-to-finish causality that are inherent in event-driven programming. It also explains asynchronous programming, and the importance of functions, deferreds, and coroutines. It then uses two popular applications, treq and klein, to demonstrate calling and writing Web APIs with Twisted.
The second part of the book dives into Twisted projects, in each case explaining how the project fits into the Twisted ecosystem and what it does, and offers several examples to bring reade ...
Learn Keras for Deep Neural NetworksLearn, understand, and implement deep neural networks in a math- and programming-friendly approach using Keras and Python. The book focuses on an end-to-end approach to developing supervised learning algorithms in regression and classification with practical business-centric use-cases implemented in Keras.
The overall book comprises three sections with two chapters in each section. The first section prepares you with all the necessary basics to get started in deep learning. Chapter 1 introduces you to the world of deep learning and its difference from machine learning, the choices of frameworks for deep learning, and the Keras ecosystem. You will cover a real-life business problem that can be solved by supervised learning algorithms with deep neural networks. You'll tackle one use case for regression and another for classification leveraging popular Kaggle datasets.
Later, you will see an interesting and challenging part of deep learning: hyperparameter tuning; helping you furthe ...
Hands-On Image Processing with PythonImage processing plays an important role in our daily lives with various applications such as in social media (face detection), medical imaging (X-ray, CT-scan), security (fingerprint recognition) to robotics & space. This book will touch the core of image processing, from concepts to code using Python.
The book will start from the classical image processing techniques and explore the evolution of image processing algorithms up to the recent advances in image processing or computer vision with deep learning. We will learn how to use image processing libraries such as PIL, scikit-mage, and scipy ndimage in Python. This book will enable us to write code snippets in Python 3 and quickly implement complex image processing algorithms such as image enhancement, filtering, segmentation, object detection, and classification. We will be able to use machine learning models using the scikit-learn library and later explore deep CNN, such as VGG-19 with Keras, and we will also use an end-to-end ...
Machine Learning Applications Using PythonGain practical skills in machine learning for finance, healthcare, and retail. This book uses a hands-on approach by providing case studies from each of these domains: you'll see examples that demonstrate how to use machine learning as a tool for business enhancement. As a domain expert, you will not only discover how machine learning is used in finance, healthcare, and retail, but also work through practical case studies where machine learning has been implemented.
Machine Learning Applications Using Python is divided into three sections, one for each of the domains (healthcare, finance, and retail). Each section starts with an overview of machine learning and key technological advancements in that domain. You'll then learn more by using case studies on how organizations are changing the game in their chosen markets. This book has practical case studies with Python code and domain-specific innovative ideas for monetizing machine learning.
Discover applied machine learning proces ...
Building Chatbots with PythonBuild your own chatbot using Python and open source tools. This book begins with an introduction to chatbots where you will gain vital information on their architecture. You will then dive straight into natural language processing with the natural language toolkit (NLTK) for building a custom language processing platform for your chatbot. With this foundation, you will take a look at different natural language processing techniques so that you can choose the right one for you.
The next stage is to learn to build a chatbot using the API.ai platform and define its intents and entities. During this example, you will learn to enable communication with your bot and also take a look at key points of its integration and deployment.
The final chapter of Building Chatbots with Python teaches you how to build, train, and deploy your very own chatbot. Using open source libraries and machine learning techniques you will learn to predict conditions for your bot and develop a conversational ag ...