Data Visualization with JavaScriptYou've got data to communicate. But what kind of visualization do you choose, how do you build it, and how do you ensure that it's up to the demands of the Web?
In Data Visualization with JavaScript, you'll learn how to use JavaScript, HTML, and CSS to build the most practical visualizations for your data. Step-by-step examples walk you through creating, integrating, and debugging different types of visualizations and will have you building basic visualizations, like bar, line, and scatter graphs, in no time.
If you already know your way around building a web page but aren't quite sure how to build a good visualization, Data Visualization with JavaScript will help you get your feet wet without throwing you into the deep end. Before you know it, you'll be well on your way to creating simple, powerful data visualizations. ...
Web Scraping with PythonLearn web scraping and crawling techniques to access unlimited data from any web source in any format. With this practical guide, you'll learn how to use Python scripts and web APIs to gather and process data from thousands - or even millions - of web pages at once.
Ideal for programmers, security professionals, and web administrators familiar with Python, this book not only teaches basic web scraping mechanics, but also delves into more advanced topics, such as analyzing raw data or using scrapers for frontend website testing. Code samples are available to help you understand the concepts in practice. ...
Neo4j CookbookNeo4j is an open source graph database written in Java. Graph databases provide an excellent way to get richer insight into data and lower the bar for entry into the data science world. Starting with a practical and vital introduction to Neo4j and various aspects of Neo4j installation, you will learn how to connect and access Neo4j servers from programming languages such as Java, Python, Ruby, and Scala. You will also learn about Neo4j administration and maintenance before expanding and advancing your knowledge by dealing with large Neo4j installations and optimizing them for both storage and querying.
This is a practical guide full of examples and Neo4j recipes. The recipes are well explained with code samples that are updated for the latest version of Neo4j. ...
HBase: The Definitive Guide, 2nd EditionIf you're looking for a scalable storage solution to accommodate a virtually endless amount of data, this updated edition shows you how Apache HBase can meet your needs. Modeled after Google's BigTable architecture, HBase scales to billions of rows and millions of columns, while ensuring that write and read performance remain constant.
Fully revised for HBase 1.0, this second edition brings you up to speed on the new HBase client API, as well as security features and new case studies that demonstrate HBase use in the real world. Whether you just started to evaluate this non-relational database, or plan to put it into practice right away, this book has your back. ...
Creating a Data-Driven OrganizationWhat do you need to become a data-driven organization? Far more than having big data or a crack team of unicorn data scientists, it requires establishing an effective, deeply-ingrained data culture. This practical book shows you how true data-drivenness involves processes that require genuine buy-in across your company, from analysts and management to the C-Suite and the board.
Through interviews and examples from data scientists and analytics leaders in a variety of industries, author Carl Anderson explains the analytics value chain you need to adopt when building predictive business models—from data collection and analysis to the insights and leadership that drive concrete actions. You'll learn what works and what doesn't, and why creating a data-driven culture throughout your organization is essential. ...
Mastering pandas for FinanceThis book will teach you to use Python and the Python Data Analysis Library (pandas) to solve real-world financial problems.
Starting with a focus on pandas data structures, you will learn to load and manipulate time-series financial data and then calculate common financial measures, leading into more advanced derivations using fixed- and moving-windows. This leads into correlating time-series data to both index and social data to build simple trading algorithms. From there, you will learn about more complex trading algorithms and implement them using open source back-testing tools. Then, you will examine the calculation of the value of options and Value at Risk. This then leads into the modeling of portfolios and calculation of optimal portfolios based upon risk. All concepts will be demonstrated continuously through progressive examples using interactive Python and IPython Notebook.
By the end of the book, you will be familiar with applying pandas to many financial problems, gi ...
Bioinformatics Data SkillsLearn the data skills necessary for turning large sequencing datasets into reproducible and robust biological findings. With this practical guide, you'll learn how to use freely available open source tools to extract meaning from large complex biological data sets.
At no other point in human history has our ability to understand life's complexities been so dependent on our skills to work with and analyze data. This intermediate-level book teaches the general computational and data skills you need to analyze biological data. If you have experience with a scripting language like Python, you're ready to get started. ...
Mastering pandasPython is a ground breaking language for its simplicity and succinctness, allowing the user to achieve a great deal with a few lines of code, especially compared to other programming languages. The pandas brings these features of Python into the data analysis realm, by providing expressiveness, simplicity, and powerful capabilities for the task of data analysis. By mastering pandas, users will be able to do complex data analysis in a short period of time, as well as illustrate their findings using the rich visualization capabilities of related tools such as IPython and matplotlib.
This book is an in-depth guide to the use of pandas for data analysis, for either the seasoned data analysis practitioner or the novice user. It provides a basic introduction to the pandas framework, and takes users through the installation of the library and the IPython interactive environment. Thereafter, you will learn basic as well as advanced features, such as MultiIndexing, modifying data structures, ...
Learning pandasThis learner's guide will help you understand how to use the features of pandas for interactive data manipulation and analysis.
This book is your ideal guide to learning about pandas, all the way from installing it to creating one- and two-dimensional indexed data structures, indexing and slicing-and-dicing that data to derive results, loading data from local and Internet-based resources, and finally creating effective visualizations to form quick insights. You start with an overview of pandas and NumPy and then dive into the details of pandas, covering pandas' Series and DataFrame objects, before ending with a quick review of using pandas for several problems in finance.
With the knowledge you gain from this book, you will be able to quickly begin your journey into the exciting world of data science and analysis. ...
Machine Learning with R, 2nd EditionUpdated and upgraded to the latest libraries and most modern thinking, Machine Learning with R, Second Edition provides you with a rigorous introduction to this essential skill of professional data science. Without shying away from technical theory, it is written to provide focused and practical knowledge to get you building algorithms and crunching your data, with minimal previous experience.
With this book, you'll discover all the analytical tools you need to gain insights from complex data and learn how to choose the correct algorithm for your specific needs. Through full engagement with the sort of real-world problems data-wranglers face, you'll learn to apply machine learning methods to deal with common tasks, including classification, prediction, forecasting, market analysis, and clustering. ...