Make Your Own Python Text AdventureLearn programming with Python by creating a text adventure. This book will teach you the fundamentals of programming, how to organize code, and some coding best practices. By the end of the book, you will have a working game that you can play or show off to friends. You will also be able to change the game and make it your own by writing a different story line, including new items, creating new characters, and more.
Make your own Python Text Adventure offers a structured approach to learning Python that teaches the fundamentals of the language, while also guiding the development of the customizable game. The first half of the book introduces programming concepts and Python syntax by building the basic structure of the game. You'll also apply the new concepts in homework questions (with solutions if you get stuck!) that follow each chapter. The second half of the book will shift the focus to adding features to your game and making it more entertaining for the player.
Python is oft ...
Agile Data Science 2.0Data science teams looking to turn research into useful analytics applications require not only the right tools, but also the right approach if they're to succeed. With the revised second edition of this hands-on guide, up-and-coming data scientists will learn how to use the Agile Data Science development methodology to build data applications with Python, Apache Spark, Kafka, and other tools.
Author Russell Jurney demonstrates how to compose a data platform for building, deploying, and refining analytics applications with Apache Kafka, MongoDB, ElasticSearch, d3.js, scikit-learn, and Apache Airflow. You'll learn an iterative approach that lets you quickly change the kind of analysis you're doing, depending on what the data is telling you. Publish data science work as a web application, and affect meaningful change in your organization.
Build value from your data in a series of agile sprints, using the data-value pyramid; Extract features for statistical models from a single data ...
Data Science Fundamentals for Python and MongoDBBuild the foundational data science skills necessary to work with and better understand complex data science algorithms. This example-driven book provides complete Python coding examples to complement and clarify data science concepts, and enrich the learning experience. Coding examples include visualizations whenever appropriate. The book is a necessary precursor to applying and implementing machine learning algorithms.
The book is self-contained. All of the math, statistics, stochastic, and programming skills required to master the content are covered. In-depth knowledge of object-oriented programming isn't required because complete examples are provided and explained.
Data Science Fundamentals with Python and MongoDB is an excellent starting point for those interested in pursuing a career in data science. Like any science, the fundamentals of data science are a prerequisite to competency. Without proficiency in mathematics, statistics, data manipulation, and coding, the path ...
Hands-On GPU-Accelerated Computer Vision with OpenCV and CUDAComputer vision has been revolutionizing a wide range of industries, and OpenCV is the most widely chosen tool for computer vision with its ability to work in multiple programming languages. Nowadays, in computer vision, there is a need to process large images in real time, which is difficult to handle for OpenCV on its own. This is where CUDA comes into the picture, allowing OpenCV to leverage powerful NVDIA GPUs. This book provides a detailed overview of integrating OpenCV with CUDA for practical applications.
To start with, you'll understand GPU programming with CUDA, an essential aspect for computer vision developers who have never worked with GPUs. You'll then move on to exploring OpenCV acceleration with GPUs and CUDA by walking through some practical examples.
Once you have got to grips with the core concepts, you'll familiarize yourself with deploying OpenCV applications on NVIDIA Jetson TX1, which is popular for computer vision and deep learning applications. The last ch ...
Exploring the Data JungleSome people like to believe that all data is ready to be used immediately. Not so! Data in the wild is hard to track and harder to understand, and the first job of data scientists to identify and prepare data so it can be used. To find your way through the data jungle successfully, you need the right perspective and guidance. (There's no point hacking at overgrowth with a spoon after all!) Identify and prepare your data well, and you'll be well set to create insight from chaos and discover important analytic patterns - to set your business on the right track.
Exploring the Data Jungle: Finding, Preparing, and Using Real-World Data is a collection of three hand-picked chapters introducing you to the often-overlooked art of putting unfamiliar data to good use. Brian Godsey, author of Think Like a Data Scientist, has selected these chapters to help you navigate data in the wild, identify and prepare raw data for analysis, modeling, machine learning, or visualization. As you explore the ...
Data Analysis and Visualization Using PythonLook at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as Jupyter Notebook and Spyder. After going through a primer on Python programming, you will grasp fundamental Python programming techniques used in data science. Moving on to data visualization, you will see how it caters to modern business needs and forms a key factor in decision-making. You will also take a look at some popular data visualization libraries in Python.
Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. ...
Python Flash CardsKeep your coding skills sharp on the go! Python Flash Cards take a tried-and-tested method and give it a programming makeover. Eric Matthes, author of the best-selling Python Crash Course, distills essential Python programming knowledge into this 101-card deck you can use anywhere.
Work through the deck in order or shuffle it up for a new study session every time. You can brush up foundational programming principles and vocabulary like data structures, logical control, and program flow, quiz yourself on Python syntax, and test your skills against exercises and challenges designed to keep you on your toes - all in one sitting.
Don't let your Python training stop at the keyboard. With Python Flash Cards, the power of Python fits in your pocket. ...
Machine Learning Applications Using PythonGain practical skills in machine learning for finance, healthcare, and retail. This book uses a hands-on approach by providing case studies from each of these domains: you'll see examples that demonstrate how to use machine learning as a tool for business enhancement. As a domain expert, you will not only discover how machine learning is used in finance, healthcare, and retail, but also work through practical case studies where machine learning has been implemented.
Machine Learning Applications Using Python is divided into three sections, one for each of the domains (healthcare, finance, and retail). Each section starts with an overview of machine learning and key technological advancements in that domain. You'll then learn more by using case studies on how organizations are changing the game in their chosen markets. This book has practical case studies with Python code and domain-specific innovative ideas for monetizing machine learning.
Discover applied machine learning proces ...
Learn Computer Vision Using OpenCVBuild practical applications of computer vision using the OpenCV library with Python. This book discusses different facets of computer vision such as image and object detection, tracking and motion analysis and their applications with examples.
The author starts with an introduction to computer vision followed by setting up OpenCV from scratch using Python. The next section discusses specialized image processing and segmentation and how images are stored and processed by a computer. This involves pattern recognition and image tagging using the OpenCV library. Next, you'll work with object detection, video storage and interpretation, and human detection using OpenCV. Tracking and motion is also discussed in detail. The book also discusses creating complex deep learning models with CNN and RNN. The author finally concludes with recent applications and trends in computer vision.
After reading this book, you will be able to understand and implement computer vision and its application ...
Learn TensorFlow 2.0Learn how to use TensorFlow 2.0 to build machine learning and deep learning models with complete examples.
The book begins with introducing TensorFlow 2.0 framework and the major changes from its last release. Next, it focuses on building Supervised Machine Learning models using TensorFlow 2.0. It also demonstrates how to build models using customer estimators. Further, it explains how to use TensorFlow 2.0 API to build machine learning and deep learning models for image classification using the standard as well as custom parameters.
You'll review sequence predictions, saving, serving, deploying, and standardized datasets, and then deploy these models to production. All the code presented in the book will be available in the form of executable scripts at Github which allows you to try out the examples and extend them in interesting ways.
Review the new features of TensorFlow 2.0; Use TensorFlow 2.0 to build machine learning and deep learning models; Perform sequence prediction ...