IT eBooks
Download, Read, Use
Advanced Analytics with Spark, 2nd Edition
Advanced Analytics with Spark, 2nd Edition

In the second edition of this practical book, four Cloudera data scientists present a set of self-contained patterns for performing large-scale data analysis with Spark. The authors bring Spark, statistical methods, and real-world data sets together to teach you how to approach analytics problems by example. Updated for Spark 2.1, this edition acts as an introduction to these techniques and other best practices in Spark programming. You'll start with an introduction to Spark and its ecosystem, and then dive into patterns that apply common techniques - including classification, clustering, collaborative filtering, and anomaly detection - to fields such as genomics, security, and finance. If you have an entry-level understanding of machine learning and statistics, and you program in Java, Python, or Scala, you'll find the book's patterns useful for working on your own data applications. Familiarize yourself with the Spark programming model; Become comfortable within the Spark ec ...
Learning Spark
Learning Spark

Data in all domains is getting bigger. How can you work with it efficiently? Recently updated for Spark 1.3, this book introduces Apache Spark, the open source cluster computing system that makes data analytics fast to write and fast to run. With Spark, you can tackle big datasets quickly through simple APIs in Python, Java, and Scala. This edition includes new information on Spark SQL, Spark Streaming, setup, and Maven coordinates. Written by the developers of Spark, this book will have data scientists and engineers up and running in no time. You'll learn how to express parallel jobs with just a few lines of code, and cover applications from simple batch jobs to stream processing and machine learning. Quickly dive into Spark capabilities such as distributed datasets, in-memory caching, and the interactive shell; Leverage Spark's powerful built-in libraries, including Spark SQL, Spark Streaming, and MLlib; Use one programming paradigm instead of mixing and matching tools like Hiv ...
Learning Jupyter 5, 2nd Edition
Learning Jupyter 5, 2nd Edition

The Jupyter Notebook allows you to create and share documents that contain live code, equations, visualizations, and explanatory text. The Jupyter Notebook system is extensively used in domains such as data cleaning and transformation, numerical simulation, statistical modeling, and machine learning. Learning Jupyter 5 will help you get to grips with interactive computing using real-world examples. The book starts with a detailed overview of the Jupyter Notebook system and its installation in different environments. Next, you will learn to integrate the Jupyter system with different programming languages such as R, Python, Java, JavaScript, and Julia, and explore various versions and packages that are compatible with the Notebook system. Moving ahead, you will master interactive widgets and namespaces and work with Jupyter in a multi-user mode. By the end of this book, you will have used Jupyter with a big dataset and be able to apply all the functionalities you've explored throu ...
Hands-On Deep Learning for Images with TensorFlow
Hands-On Deep Learning for Images with TensorFlow

TensorFlow is Google's popular offering for machine learning and deep learning, quickly becoming a favorite tool for performing fast, efficient, and accurate deep learning tasks. Hands-On Deep Learning for Images with TensorFlow shows you the practical implementations of real-world projects, teaching you how to leverage TensorFlow's capabilities to perform efficient image processing using the power of deep learning. With the help of this book, you will get to grips with the different paradigms of performing deep learning such as deep neural nets and convolutional neural networks, followed by understanding how they can be implemented using TensorFlow. By the end of this book, you will have mastered all the concepts of deep learning and their implementation with TensorFlow and Keras. ...
Natural Language Processing with Java, 2nd Edition
Natural Language Processing with Java, 2nd Edition

Natural Language Processing (NLP) allows you to take any sentence and identify patterns, special names, company names, and more. The second edition of Natural Language Processing with Java teaches you how to perform language analysis with the help of Java libraries, while constantly gaining insights from the outcomes. You'll start by understanding how NLP and its various concepts work. Having got to grips with the basics, you'll explore important tools and libraries in Java for NLP, such as CoreNLP, OpenNLP, Neuroph, and Mallet. You'll then start performing NLP on different inputs and tasks, such as tokenization, model training, parts-of-speech and parsing trees. You'll learn about statistical machine translation, summarization, dialog systems, complex searches, supervised and unsupervised NLP, and more. By the end of this book, you'll have learned more about NLP, neural networks, and various other trained models in Java for enhancing the performance of NLP applications. ...
Hands-On Artificial Intelligence with Java for Beginners
Hands-On Artificial Intelligence with Java for Beginners

Artificial intelligence (AI) is increasingly in demand as well as relevant in the modern world, where everything is driven by technology and data. AI can be used for automating systems or processes to carry out complex tasks and functions in order to achieve optimal performance and productivity. Hands-On Artificial Intelligence with Java for Beginners begins by introducing you to AI concepts and algorithms. You will learn about various Java-based libraries and frameworks that can be used in implementing AI to build smart applications. In addition to this, the book teaches you how to implement easy to complex AI tasks, such as genetic programming, heuristic searches, reinforcement learning, neural networks, and segmentation, all with a practical approach. By the end of this book, you will not only have a solid grasp of AI concepts, but you'll also be able to build your own smart applications for multiple domains. ...
Hands-On Markov Models with Python
Hands-On Markov Models with Python

Hidden Markov Model (HMM) is a statistical model based on the Markov chain concept. Hands-On Markov Models with Python helps you get to grips with HMMs and different inference algorithms by working on real-world problems. The hands-on examples explored in the book help you simplify the process flow in machine learning by using Markov model concepts, thereby making it accessible to everyone. Once you've covered the basic concepts of Markov chains, you'll get insights into Markov processes, models, and types with the help of practical examples. After grasping these fundamentals, you'll move on to learning about the different algorithms used in inferences and applying them in state and parameter inference. In addition to this, you'll explore the Bayesian approach of inference and learn how to apply it in HMMs. In further chapters, you'll discover how to use HMMs in time series analysis and natural language processing (NLP) using Python. You'll also learn to apply HMM to image proces ...
Deep Learning with Azure
Deep Learning with Azure

Get up-to-speed with Microsoft's AI Platform. Learn to innovate and accelerate with open and powerful tools and services that bring artificial intelligence to every data scientist and developer. Artificial Intelligence (AI) is the new normal. Innovations in deep learning algorithms and hardware are happening at a rapid pace. It is no longer a question of should I build AI into my business, but more about where do I begin and how do I get started with AI? Written by expert data scientists at Microsoft, Deep Learning with the Microsoft AI Platform helps you with the how-to of doing deep learning on Azure and leveraging deep learning to create innovative and intelligent solutions. Benefit from guidance on where to begin your AI adventure, and learn how the cloud provides you with all the tools, infrastructure, and services you need to do AI. Become familiar with the tools, infrastructure, and services available for deep learning on Microsoft Azure such as Azure Machine Learning ser ...
Applied Deep Learning
Applied Deep Learning

Work with advanced topics in deep learning, such as optimization algorithms, hyper-parameter tuning, dropout, and error analysis as well as strategies to address typical problems encountered when training deep neural networks. You'll begin by studying the activation functions mostly with a single neuron (ReLu, sigmoid, and Swish), seeing how to perform linear and logistic regression using TensorFlow, and choosing the right cost function. The next section talks about more complicated neural network architectures with several layers and neurons and explores the problem of random initialization of weights. An entire chapter is dedicated to a complete overview of neural network error analysis, giving examples of solving problems originating from variance, bias, overfitting, and datasets coming from different distributions. Applied Deep Learning also discusses how to implement logistic regression completely from scratch without using any Python library except NumPy, to let you appre ...
Practical Computer Vision Applications Using Deep Learning with CNNs
Practical Computer Vision Applications Using Deep Learning with CNNs

Deploy deep learning applications into production across multiple platforms. You will work on computer vision applications that use the convolutional neural network (CNN) deep learning model and Python. This book starts by explaining the traditional machine-learning pipeline, where you will analyze an image dataset. Along the way you will cover artificial neural networks (ANNs), building one from scratch in Python, before optimizing it using genetic algorithms. For automating the process, the book highlights the limitations of traditional hand-crafted features for computer vision and why the CNN deep-learning model is the state-of-art solution. CNNs are discussed from scratch to demonstrate how they are different and more efficient than the fully connected ANN (FCNN). You will implement a CNN in Python to give you a full understanding of the model. After consolidating the basics, you will use TensorFlow to build a practical image-recognition model that you will deploy to a web s ...
← Prev       Next →
Reproduction of site books is authorized only for informative purposes and strictly for personal, private use.
Only Direct Download
IT eBooks Group © 2011-2025