Python Data Visualization CookbookToday, data visualization is a hot topic as a direct result of the vast amount of data created every second. Transforming that data into information is a complex task for data visualization professionals, who, at the same time, try to understand the data and objectively transfer that understanding to others. This book is a set of practical recipes that strive to help the reader get a firm grasp of the area of data visualization using Python and its popular visualization and data libraries.
Python Data Visualization Cookbook will progress the reader from the point of installing and setting up a Python environment for data manipulation and visualization all the way to 3D animations using Python libraries. Readers will benefit from over 60 precise and reproducible recipes that guide the reader towards a better understanding of data concepts and the building blocks for subsequent and sometimes more advanced concepts. ...
Microsoft SQL Server 2012 with HadoopWith the explosion of data, the open source Apache Hadoop ecosystem is gaining traction, thanks to its huge ecosystem that has arisen around the core functionalities of its distributed file system (HDFS) and Map Reduce. As of today, being able to have SQL Server talking to Hadoop has become increasingly important because the two are indeed complementary. While petabytes of unstructured data can be stored in Hadoop taking hours to be queried, terabytes of structured data can be stored in SQL Server 2012 and queried in seconds. This leads to the need to transfer and integrate data between Hadoop and SQL Server. ...
Getting Started with MariaDBIn the modern age, storing data is of paramount importance, and this is where databases enter the picture. MariaDB is a relatively new database that has become very popular in a short amount of time. It is a community-developed fork of MySQL and it is designed to be an enhanced and backward compatible database solution.
Getting Started with MariaDB is a practical, hands-on, beginner-friendly guide to installing and using MariaDB. This book will start with the installation of MariaDB before moving on to the basics. You will then learn how to configure and maintain your database with the help of real-world examples. ...
Doing Data ScienceNow that people are aware that data can make the difference in an election or a business model, data science as an occupation is gaining ground. But how can you get started working in a wide-ranging, interdisciplinary field that's so clouded in hype? This insightful book, based on Columbia University's Introduction to Data Science class, tells you what you need to know.
In many of these chapter-long lectures, data scientists from companies such as Google, Microsoft, and eBay share new algorithms, methods, and models by presenting case studies and the code they use. If you're familiar with linear algebra, probability, and statistics, and have programming experience, this book is an ideal introduction to data science. ...
Anonymizing Health DataWith this practical book, you will learn proven methods for anonymizing health data to help your organization share meaningful datasets, without exposing patient identity. Leading experts Khaled El Emam and Luk Arbuckle walk you through a risk-based methodology, using case studies from their efforts to de-identify hundreds of datasets.
Clinical data is valuable for research and other types of analytics, but making it anonymous without compromising data quality is tricky. This book demonstrates techniques for handling different data types, based on the authors' experiences with a maternal-child registry, inpatient discharge abstracts, health insurance claims, electronic medical record databases, and the World Trade Center disaster registry, among others. ...
Thinking with DataMany analysts are too concerned with tools and techniques for cleansing, modeling, and visualizing datasets and not concerned enough with asking the right questions. In this practical guide, data strategy consultant Max Shron shows you how to put the why before the how, through an often-overlooked set of analytical skills.
Thinking with Data helps you learn techniques for turning data into knowledge you can use. You'll learn a framework for defining your project, including the data you want to collect, and how you intend to approach, organize, and analyze the results. You'll also learn patterns of reasoning that will help you unveil the real problem that needs to be solved. ...
KNIME EssentialsKNIME is an open source data analytics, reporting, and integration platform, which allows you to analyze a small or large amount of data without having to reach out to programming languages like R.
KNIME Essentials teaches you all you need to know to start processing your first data sets using KNIME. It covers topics like installation, data processing, and data visualization including the KNIME reporting features. Data processing forms a fundamental part of KNIME, and KNIME Essentials ensures that you are fully comfortable with this aspect of KNIME before showing you how to visualize this data and generate reports. ...
Interactive Data Visualization for the WebCreate and publish your own interactive data visualization projects on the Web, even if you have no experience with either web development or data visualization. It's easy with this hands-on guide. You'll start with an overview of data visualization concepts and simple web technologies, and then learn how to use D3, a JavaScript library that lets you express data as visual elements in a web page. ...
Mining the Social Web, 2nd EditionHow can you tap into the wealth of social web data to discover who's making connections with whom, what they're talking about, and where they're located? With this expanded and thoroughly revised edition, you'll learn how to acquire, analyze, and summarize data from all corners of the social web, including Facebook, Twitter, LinkedIn, Google+, GitHub, email, websites, and blogs.
The example code for this unique data science book is maintained in a public GitHub repository. It's designed to be easily accessible through a turnkey virtual machine that facilitates interactive learning with an easy-to-use collection of IPython Notebooks. ...
Getting Started with Greenplum for Big Data AnalyticsOrganizations are leveraging the use of data and analytics to gain a competitive advantage over their opposition. Therefore, organizations are quickly becoming more and more data driven. With the advent of Big Data, existing Data Warehousing and Business Intelligence solutions are becoming obsolete, and a requisite for new agile platforms consisting of all the aspects of Big Data has become inevitable. From loading/integrating data to presenting analytical visualizations and reports, the new Big Data platforms like Greenplum do it all. It is now the mindset of the user that requires a tuning to put the solutions to work.
Getting Started with Greenplum for Big Data Analytics is a practical, hands-on guide to learning and implementing Big Data Analytics using the Greenplum Integrated Analytics Platform. From processing structured and unstructured data to presenting the results/insights to key business stakeholders, this book explains it all. ...