IoT Machine Learning Applications in Telecom, Energy, and AgricultureApply machine learning using the Internet of Things (IoT) in the agriculture, telecom, and energy domains with case studies. This book begins by covering how to set up the software and hardware components including the various sensors to implement the case studies in Python.
The case study section starts with an examination of call drop with IoT in the telecoms industry, followed by a case study on energy audit and predictive maintenance for an industrial machine, and finally covers techniques to predict cash crop failure in agribusiness. The last section covers pitfalls to avoid while implementing machine learning and IoT in these domains.
After reading this book, you will know how IoT and machine learning are used in the example domains and have practical case studies to use and extend. You will be able to create enterprise-scale applications using Raspberry Pi 3 B+ and Arduino Mega 2560 with Python. ...
Python Automation Cookbook, 2nd EditionIn this updated and extended version of Python Automation Cookbook, each chapter now comprises the newest recipes and is revised to align with Python 3.8 and higher. The book includes three new chapters that focus on using Python for test automation, machine learning projects, and for working with messy data.
This edition will enable you to develop a sharp understanding of the fundamentals required to automate business processes through real-world tasks, such as developing your first web scraping application, analyzing information to generate spreadsheet reports with graphs, and communicating with automatically generated emails.
Once you grasp the basics, you will acquire the practical knowledge to create stunning graphs and charts using Matplotlib, generate rich graphics with relevant information, automate marketing campaigns, build machine learning projects, and execute debugging techniques.
By the end of this book, you will be proficient in identifying monotonous tasks and ...
Machine Learning in the Oil and Gas IndustryApply machine and deep learning to solve some of the challenges in the oil and gas industry. The book begins with a brief discussion of the oil and gas exploration and production life cycle in the context of data flow through the different stages of industry operations. This leads to a survey of some interesting problems, which are good candidates for applying machine and deep learning approaches. The initial chapters provide a primer on the Python programming language used for implementing the algorithms; this is followed by an overview of supervised and unsupervised machine learning concepts. The authors provide industry examples using open source data sets along with practical explanations of the algorithms, without diving too deep into the theoretical aspects of the algorithms employed. Machine Learning in the Oil and Gas Industry covers problems encompassing diverse industry topics, including geophysics (seismic interpretation), geological modeling, reservoir engineering, and prod ...
Real-World PythonWith its emphasis on project-based practice, Real World Python will take you from playing with syntax to writing complete programs in no time. You'll conduct experiments, explore statistical concepts, and solve novel problems that have frustrated geniuses throughout history, like detecting distant exoplanets, as you continue to build your Python skills.
Chapters begin with a clearly defined project goal and a discussion of ways to attack the problem, followed by a mission designed to make you think like a programmer. You'll direct a Coast Guard search-and-rescue effort, plot and execute a NASA flight to the moon, protect access to a secure lab using facial recognition, and more. Along the way you'll learn how to: Use libraries like matplotlib, NumPy, Bokeh, pandas, Requests, Beautiful Soup, and turtle; Work with Natural Language Processing and computer vision modules like NLTK and OpenCV; Write a program to detect and track objects moving across a starfield; Scrape speeches from the ...
Python Machine Learning By Example, 3rd EditionPython Machine Learning By Example, 3rd Edition serves as a comprehensive gateway into the world of machine learning (ML).
With six new chapters, on topics including movie recommendation engine development with Naïve Bayes, recognizing faces with support vector machine, predicting stock prices with artificial neural networks, categorizing images of clothing with convolutional neural networks, predicting with sequences using recurring neural networks, and leveraging reinforcement learning for making decisions, the book has been considerably updated for the latest enterprise requirements.
At the same time, this book provides actionable insights on the key fundamentals of ML with Python programming. Hayden applies his expertise to demonstrate implementations of algorithms in Python, both from scratch and with libraries.
Each chapter walks through an industry-adopted application. With the help of realistic examples, you will gain an understanding of the mechanics of ML techniques ...
Quantum Machine Learning with PythonQuickly scale up to Quantum computing and Quantum machine learning foundations and related mathematics and expose them to different use cases that can be solved through Quantum based algorithms.This book explains Quantum Computing, which leverages the Quantum mechanical properties sub-atomic particles. It also examines Quantum machine learning, which can help solve some of the most challenging problems in forecasting, financial modeling, genomics, cybersecurity, supply chain logistics, cryptography among others.
You'll start by reviewing the fundamental concepts of Quantum Computing, such as Dirac Notations, Qubits, and Bell state, followed by postulates and mathematical foundations of Quantum Computing. Once the foundation base is set, you'll delve deep into Quantum based algorithms including Quantum Fourier transform, phase estimation, and HHL (Harrow-Hassidim-Lloyd) among others.
You'll then be introduced to Quantum machine learning and Quantum deep learning-based algorithms, ...
Generative AI with Python and TensorFlow 2In recent years, generative artificial intelligence has been instrumental in the creation of lifelike data (images, speech, video, music, and text) from scratch. In this book you will unpack how these powerful models are created from relatively simple building blocks, and how you might adapt these models to your own use cases.
You will begin by setting up clean containerized environments for Python and getting to grips with the fundamentals of deep neural networks, learning about core concepts like the perceptron, activation functions, backpropagation, and how they all tie together. Once you have covered the basics, you will explore deep generative models in depth, including OpenAI's GPT-series of news generators, networks for style transfer and deepfakes, and synergy with reinforcement learning.
As you progress, you will focus on abstractions where useful, and understand the "nuts and bolts" of how the models are composed in code, underpinned by detailed architecture diagrams. T ...
Python Object-Oriented Programming, 4th EditionObject-oriented programming (OOP) is a popular design paradigm in which data and behaviors are encapsulated in such a way that they can be manipulated together. Python Object-Oriented Programming, Fourth Edition dives deep into the various aspects of OOP, Python as an OOP language, common and advanced design patterns, and hands-on data manipulation and testing of more complex OOP systems. These concepts are consolidated by open-ended exercises, as well as a real-world case study at the end of every chapter, newly written for this edition. All example code is now compatible with Python 3.9+ syntax and has been updated with type hints for ease of learning.
Steven and Dusty provide a comprehensive, illustrative tour of important OOP concepts, such as inheritance, composition, and polymorphism, and explain how they work together with Python's classes and data structures to facilitate good design. In addition, the book also features an in-depth look at Python's exception handling and how ...
Machine Learning for Financial Risk Management with PythonFinancial risk management is quickly evolving with the help of artificial intelligence. With this practical book, developers, programmers, engineers, financial analysts, risk analysts, and quantitative and algorithmic analysts will examine Python-based machine learning and deep learning models for assessing financial risk. Building hands-on AI-based financial modeling skills, you'll learn how to replace traditional financial risk models with ML models.
Author Abdullah Karasan helps you explore the theory behind financial risk modeling before diving into practical ways of employing ML models in modeling financial risk using Python. With this book, you will: Review classical time series applications and compare them with deep learning models; Explore volatility modeling to measure degrees of risk, using support vector regression, neural networks, and deep learning; Improve market risk models (VaR and ES) using ML techniques and including liquidity dimension; Develop a credit risk anal ...
Applied Deep Learning with TensorFlow 2, 2nd EditionUnderstand how neural networks work and learn how to implement them using TensorFlow 2.0 and Keras. This new edition focuses on the fundamental concepts and at the same time on practical aspects of implementing neural networks and deep learning for your research projects.
This book is designed so that you can focus on the parts you are interested in. You will explore topics as regularization, optimizers, optimization, metric analysis, and hyper-parameter tuning. In addition, you will learn the fundamentals ideas behind autoencoders and generative adversarial networks.
All the code presented in the book will be available in the form of Jupyter notebooks which would allow you to try out all examples and extend them in interesting ways. A companion online book is available with the complete code for all examples discussed in the book and additional material more related to TensorFlow and Keras. All the code will be available in Jupyter notebook format and can be opened directly in G ...