Grokking Machine LearningGrokking Machine Learning teaches you how to apply ML to your projects using only standard Python code and high school-level math. No specialist knowledge is required to tackle the hands-on exercises using Python and readily available machine learning tools. Packed with easy-to-follow Python-based exercises and mini-projects, this book sets you on the path to becoming a machine learning expert.
Discover powerful machine learning techniques you can understand and apply using only high school math! Put simply, machine learning is a set of techniques for data analysis based on algorithms that deliver better results as you give them more data. ML powers many cutting-edge technologies, such as recommendation systems, facial recognition software, smart speakers, and even self-driving cars. This unique book introduces the core concepts of machine learning, using relatable examples, engaging exercises, and crisp illustrations.
Grokking Machine Learning presents machine learning algorithm ...
Understanding Machine LearningThe subject of this book is automated learning, or, as we will more often call it, Machine Learning (ML). That is, we wish to program computers so that they can "learn" from input available to them. Roughly speaking, learning is the process of converting experience into expertise or knowledge. The input to a learning algorithm is training data, representing experience, and the output is some expertise, which usually takes the form of another computer program that can perform some task. Seeking a formal-mathematical understanding of this concept, we'll have to be more explicit about what we mean by each of the involved terms: What is the training data our programs will access? How can the process of learning be automated? How can we evaluate the success of such a process (namely, the quality of the output of a learning program)? ...
Algorithmic Aspects of Machine LearningThis course is organized around algorithmic issues that arise in machine learning. Modern machine learning systems are often built on top of algorithms that do not have provable guarantees, and it is the subject of debate when and why they work. In this class, we focus on designing algorithms whose performance we can rigorously analyze for fundamental machine learning problems.
The book is based on the class "Algorithmic Aspects of Machine Learning" taught at MIT in Fall 2013, Spring 2015 and Fall 2017. ...
Hands-on Machine Learning with PythonHere is the perfect comprehensive guide for readers with basic to intermediate level knowledge of machine learning and deep learning. It introduces tools such as NumPy for numerical processing, Pandas for panel data analysis, Matplotlib for visualization, Scikit-learn for machine learning, and Pytorch for deep learning with Python. It also serves as a long-term reference manual for the practitioners who will find solutions to commonly occurring scenarios.
The book is divided into three sections. The first section introduces you to number crunching and data analysis tools using Python with in-depth explanation on environment configuration, data loading, numerical processing, data analysis, and visualizations. The second section covers machine learning basics and Scikit-learn library. It also explains supervised learning, unsupervised learning, implementation, and classification of regression algorithms, and ensemble learning methods in an easy manner with theoretical and practical le ...
Azure AI Services at Scale for Cloud, Mobile, and EdgeTake advantage of the power of cloud and the latest AI techniques. Whether you're an experienced developer wanting to improve your app with AI-powered features or you want to make a business process smarter by getting AI to do some of the work, this book's got you covered. Authors Anand Raman, Chris Hoder, Simon Bisson, and Mary Branscombe show you how to build practical intelligent applications for the cloud, mobile, browsers, and edge devices using a hands-on approach.
This book shows you how cloud AI services fit in alongside familiar software development approaches, walks you through key Microsoft AI services, and provides real-world examples of AI-oriented architectures that integrate different Azure AI services. All you need to get started is a working knowledge of basic cloud concepts.
Become familiar with Azure AI offerings and capabilities; Build intelligent applications using Azure Cognitive Services; Train, tune, and deploy models with Azure Machine Learning, PyTorch, ...
Distributed Machine Learning with PythonReducing time cost in machine learning leads to a shorter waiting time for model training and a faster model updating cycle. Distributed machine learning enables machine learning practitioners to shorten model training and inference time by orders of magnitude. With the help of this practical guide, you'll be able to put your Python development knowledge to work to get up and running with the implementation of distributed machine learning, including multi-node machine learning systems, in no time. You'll begin by exploring how distributed systems work in the machine learning area and how distributed machine learning is applied to state-of-the-art deep learning models. As you advance, you'll see how to use distributed systems to enhance machine learning model training and serving speed. You'll also get to grips with applying data parallel and model parallel approaches before optimizing the in-parallel model training and serving pipeline in local clusters or cloud environments. By the en ...
Azure Machine LearningThis third ebook in the series introduces Microsoft Azure Machine Learning, a service that a developer can use to build predictive analytics models (using training datasets from a variety of data sources) and then easily deploy those models for consumption as cloud web services. The ebook presents an overview of modern data science theory and principles, the associated workflow, and then covers some of the more common machine learning algorithms in use today. It builds a variety of predictive analytics models using real world data, evaluates several different machine learning algorithms and modeling strategies, and then deploys the finished models as machine learning web services on Azure within a matter of minutes. The ebook also expands on a working Azure Machine Learning predictive model example to explore the types of client and server applications you can create to consume Azure Machine Learning web services. ...
Natural Language Processing with TensorFlow, 2nd EditionLearning how to solve natural language processing (NLP) problems is an important skill to master due to the explosive growth of data combined with the demand for machine learning solutions in production. Natural Language Processing with TensorFlow, Second Edition, will teach you how to solve common real-world NLP problems with a variety of deep learning model architectures.
The book starts by getting readers familiar with NLP and the basics of TensorFlow. Then, it gradually teaches you different facets of TensorFlow 2.x. In the following chapters, you then learn how to generate powerful word vectors, classify text, generate new text, and generate image captions, among other exciting use-cases of real-world NLP.
TensorFlow has evolved to be an ecosystem that supports a machine learning workflow through ingesting and transforming data, building models, monitoring, and productionization. We will then read text directly from files and perform the required transformations through a Te ...
Machine Learning Techniques for TextWith the ever-increasing demand for machine learning and programming professionals, it's prime time to invest in the field. This book will help you in this endeavor, focusing specifically on text data and human language by steering a middle path among the various textbooks that present complicated theoretical concepts or focus disproportionately on Python code.
A good metaphor this work builds upon is the relationship between an experienced craftsperson and their trainee. Based on the current problem, the former picks a tool from the toolbox, explains its utility, and puts it into action. This approach will help you to identify at least one practical use for each method or technique presented. The content unfolds in ten chapters, each discussing one specific case study. For this reason, the book is solution-oriented. It's accompanied by Python code in the form of Jupyter notebooks to help you obtain hands-on experience. A recurring pattern in the chapters of this book is helping you ...
The Big Book of Machine Learning Use CasesThe world of machine learning is evolving so quickly that it's challenging to find real-life use cases that are relevant to your day-to-day work.
That's why we've created this comprehensive guide you can start using right away. Get everything you need - use cases, code samples and notebooks - so you can start putting the Databricks Lakehouse Platform to work today.
Plus, you'll get case studies from leading companies like Comcast, Regeneron and Nationwide.
Learn how to:
- Use dynamic time warping and MLflow to detect sales trends series;
- Perform multivariate time series forecasting with recurrent neural networks;
- Access new product capabilities with demos;
- Detect financial fraud at scale with decision trees and MLflow on Databricks. ...