IT eBooks
Download, Read, Use
Hands-On Data Science with SQL Server 2017
Hands-On Data Science with SQL Server 2017

SQL Server is a relational database management system that enables you to cover end-to-end data science processes using various inbuilt services and features. Hands-On Data Science with SQL Server 2017 starts with an overview of data science with SQL to understand the core tasks in data science. You will learn intermediate-to-advanced level concepts to perform analytical tasks on data using SQL Server. The book has a unique approach, covering best practices, tasks, and challenges to test your abilities at the end of each chapter. You will explore the ins and outs of performing various key tasks such as data collection, cleaning, manipulation, aggregations, and filtering techniques. As you make your way through the chapters, you will turn raw data into actionable insights by wrangling and extracting data from databases using T-SQL. You will get to grips with preparing and presenting data in a meaningful way, using Power BI to reveal hidden patterns. In the concluding chapters, you wi ...
Data Analysis and Visualization Using Python
Data Analysis and Visualization Using Python

Look at Python from a data science point of view and learn proven techniques for data visualization as used in making critical business decisions. Starting with an introduction to data science with Python, you will take a closer look at the Python environment and get acquainted with editors such as Jupyter Notebook and Spyder. After going through a primer on Python programming, you will grasp fundamental Python programming techniques used in data science. Moving on to data visualization, you will see how it caters to modern business needs and forms a key factor in decision-making. You will also take a look at some popular data visualization libraries in Python. Shifting focus to data structures, you will learn the various aspects of data structures from a data science perspective. You will then work with file I/O and regular expressions in Python, followed by gathering and cleaning data. Moving on to exploring and analyzing data, you will look at advanced data structures in Python. ...
Hands-On Data Science with R
Hands-On Data Science with R

R is the most widely used programming language, and when used in association with data science, this powerful combination will solve the complexities involved with unstructured datasets in the real world. This book covers the entire data science ecosystem for aspiring data scientists, right from zero to a level where you are confident enough to get hands-on with real-world data science problems. The book starts with an introduction to data science and introduces readers to popular R libraries for executing data science routine tasks. This book covers all the important processes in data science such as data gathering, cleaning data, and then uncovering patterns from it. You will explore algorithms such as machine learning algorithms, predictive analytical models, and finally deep learning algorithms. You will learn to run the most powerful visualization packages available in R so as to ensure that you can easily derive insights from your data. Towards the end, you will also learn ...
Hands-On Big Data Modeling
Hands-On Big Data Modeling

Modeling and managing data is a central focus of all big data projects. In fact, a database is considered to be effective only if you have a logical and sophisticated data model. This book will help you develop practical skills in modeling your own big data projects and improve the performance of analytical queries for your specific business requirements. To start with, you'll get a quick introduction to big data and understand the different data modeling and data management platforms for big data. Then you'll work with structured and semi-structured data with the help of real-life examples. Once you've got to grips with the basics, you'll use the SQL Developer Data Modeler to create your own data models containing different file types such as CSV, XML, and JSON. You'll also learn to create graph data models and explore data modeling with streaming data using real-world datasets. By the end of this book, you'll be able to design and develop efficient data models for varying data ...
Understanding Azure Data Factory
Understanding Azure Data Factory

Improve your analytics and data platform to solve major challenges, including operationalizing big data and advanced analytics workloads on Azure. You will learn how to monitor complex pipelines, set alerts, and extend your organization's custom monitoring requirements. This book starts with an overview of the Azure Data Factory as a hybrid ETL/ELT orchestration service on Azure. The book then dives into data movement and the connectivity capability of Azure Data Factory. You will learn about the support for hybrid data integration from disparate sources such as on-premise, cloud, or from SaaS applications. Detailed guidance is provided on how to transform data and on control flow. Demonstration of operationalizing the pipelines and ETL with SSIS is included. You will know how to leverage Azure Data Factory to run existing SSIS packages. As you advance through the book, you will wrap up by learning how to create a single pane for end-to-end monitoring, which is a key skill in buildi ...
JavaScript Data Structures and Algorithms
JavaScript Data Structures and Algorithms

Explore data structures and algorithm concepts and their relation to everyday JavaScript development. A basic understanding of these ideas is essential to any JavaScript developer wishing to analyze and build great software solutions. You'll discover how to implement data structures such as hash tables, linked lists, stacks, queues, trees, and graphs. You'll also learn how a URL shortener, such as bit.ly, is developed and what is happening to the data as a PDF is uploaded to a webpage. This book covers the practical applications of data structures and algorithms to encryption, searching, sorting, and pattern matching. It is crucial for JavaScript developers to understand how data structures work and how to design algorithms. This book and the accompanying code provide that essential foundation for doing so. With JavaScript Data Structures and Algorithms you can start developing your knowledge and applying it to your JavaScript projects today. Review core data structure funda ...
Apache Spark 2: Data Processing and Real-Time Analytics
Apache Spark 2: Data Processing and Real-Time Analytics

Apache Spark is an in-memory, cluster-based data processing system that provides a wide range of functionalities such as big data processing, analytics, machine learning, and more. With this Learning Path, you can take your knowledge of Apache Spark to the next level by learning how to expand Spark's functionality and building your own data flow and machine learning programs on this platform. You will work with the different modules in Apache Spark, such as interactive querying with Spark SQL, using DataFrames and datasets, implementing streaming analytics with Spark Streaming, and applying machine learning and deep learning techniques on Spark using MLlib and various external tools. By the end of this elaborately designed Learning Path, you will have all the knowledge you need to master Apache Spark, and build your own big data processing and analytics pipeline quickly and without any hassle. ...
Prepare Your Data for Tableau
Prepare Your Data for Tableau

Focus on the most important and most often overlooked factor in a successful Tableau project - data. Without a reliable data source, you will not achieve the results you hope for in Tableau. This book does more than teach the mechanics of data preparation. It teaches you: how to look at data in a new way, to recognize the most common issues that hinder analytics, and how to mitigate those factors one by one. Tableau can change the course of business, but the old adage of "garbage in, garbage out" is the hard truth that hides behind every Tableau sales pitch. That amazing sales demo does not work as well with bad data. The unfortunate reality is that almost all data starts out in a less-than-perfect state. Data prep is hard. Traditionally, we were forced into the world of the database where complex ETL (Extract, Transform, Load) operations created by the data team did all the heavy lifting for us. Fortunately, we have moved past those days. With the introduction of the Tableau Dat ...
Practical Synthetic Data Generation
Practical Synthetic Data Generation

Building and testing machine learning models requires access to large and diverse data. But where can you find usable datasets without running into privacy issues? This practical book introduces techniques for generating synthetic data - fake data generated from real data - so you can perform secondary analysis to do research, understand customer behaviors, develop new products, or generate new revenue. Data scientists will learn how synthetic data generation provides a way to make such data broadly available for secondary purposes while addressing many privacy concerns. Analysts will learn the principles and steps for generating synthetic data from real datasets. And business leaders will see how synthetic data can help accelerate time to a product or solution. This book describes: Steps for generating synthetic data using multivariate normal distributions; Methods for distribution fitting covering different goodness-of-fit metrics; How to replicate the simple structure of orig ...
SQL Server Big Data Clusters
SQL Server Big Data Clusters

Use this guide to one of SQL Server 2019's most impactful features - Big Data Clusters. You will learn about data virtualization and data lakes for this complete artificial intelligence (AI) and machine learning (ML) platform within the SQL Server database engine. You will know how to use Big Data Clusters to combine large volumes of streaming data for analysis along with data stored in a traditional database. For example, you can stream large volumes of data from Apache Spark in real time while executing Transact-SQL queries to bring in relevant additional data from your corporate, SQL Server database. Filled with clear examples and use cases, this book provides everything necessary to get started working with Big Data Clusters in SQL Server 2019. You will learn about the architectural foundations that are made up from Kubernetes, Spark, HDFS, and SQL Server on Linux. You then are shown how to configure and deploy Big Data Clusters in on-premises environments or in the cloud. Next, ...
← Prev       Next →
Reproduction of site books is authorized only for informative purposes and strictly for personal, private use.
Only Direct Download
IT eBooks Group © 2011-2025