?>
IT eBooks
Download, Read, Use

Mac eBooks

Machine Learning with R, 3rd Edition
Machine Learning with R, 3rd Edition

Machine learning, at its core, is concerned with transforming data into actionable knowledge. R offers a powerful set of machine learning methods to quickly and easily gain insight from your data. Machine Learning with R, Third Edition provides a hands-on, readable guide to applying machine learning to real-world problems. Whether you are an experienced R user or new to the language, Brett Lantz teaches you everything you need to uncover key insights, make new predictions, and visualize your findings. This new 3rd edition updates the classic R data science book with newer and better libraries, advice on ethical and bias issues in machine learning, and an introduction to deep learning. Find powerful new insights in your data; discover machine learning with R. ...
Machine Learning for Finance
Machine Learning for Finance

Machine Learning for Finance explores new advances in machine learning and shows how they can be applied across the financial sector, including insurance, transactions, and lending. This book explains the concepts and algorithms behind the main machine learning techniques and provides example Python code for implementing the models yourself. The book is based on Jannes Klaas experience of running machine learning training courses for financial professionals. Rather than providing ready-made financial algorithms, the book focuses on advanced machine learning concepts and ideas that can be applied in a wide variety of ways. The book systematically explains how machine learning works on structured data, text, images, and time series. You'll cover generative adversarial learning, reinforcement learning, debugging, and launching machine learning products. Later chapters will discuss how to fight bias in machine learning. The book ends with an exploration of Bayesian inference and prob ...
Genetic Algorithms and Machine Learning for Programmers
Genetic Algorithms and Machine Learning for Programmers

Self-driving cars, natural language recognition, and online recommendation engines are all possible thanks to Machine Learning. Now you can create your own genetic algorithms, nature-inspired swarms, Monte Carlo simulations, cellular automata, and clusters. Learn how to test your ML code and dive into even more advanced topics. If you are a beginner-to-intermediate programmer keen to understand machine learning, this book is for you. Discover machine learning algorithms using a handful of self-contained recipes. Build a repertoire of algorithms, discovering terms and approaches that apply generally. Bake intelligence into your algorithms, guiding them to discover good solutions to problems. Use heuristics and design fitness functions; Build genetic algorithms; Make nature-inspired swarms with ants, bees and particles; Create Monte Carlo simulations; Investigate cellular automata; Find minima and maxima, using hill climbing and simulated annealing; Try selection methods, including ...
Beginning Machine Learning in iOS
Beginning Machine Learning in iOS

Implement machine learning models in your iOS applications. This short work begins by reviewing the primary principals of machine learning and then moves on to discussing more advanced topics, such as CoreML, the framework used to enable machine learning tasks in Apple products. Many applications on iPhone use machine learning: Siri to serve voice-based requests, the Photos app for facial recognition, and Facebook to suggest which people that might be in a photo. You'll review how these types of machine learning tasks are implemented and performed so that you can use them in your own apps. Beginning Machine Learning in iOS is your guide to putting machine learning to work in your iOS applications. Understand the CoreML components; Train custom models; Implement GPU processing for better computation efficiency; Enable machine learning in your application. ...
Advanced R Statistical Programming and Data Models
Advanced R Statistical Programming and Data Models

Carry out a variety of advanced statistical analyses including generalized additive models, mixed effects models, multiple imputation, machine learning, and missing data techniques using R. Each chapter starts with conceptual background information about the techniques, includes multiple examples using R to achieve results, and concludes with a case study. Written by Matt and Joshua F. Wiley, Advanced R Statistical Programming and Data Models shows you how to conduct data analysis using the popular R language. You'll delve into the preconditions or hypothesis for various statistical tests and techniques and work through concrete examples using R for a variety of these next-level analytics. This is a must-have guide and reference on using and programming with the R language. Conduct advanced analyses in R including: generalized linear models, generalized additive models, mixed effects models, machine learning, and parallel processing; Carry out regression modeling using R data ...
Machine Learning and AI for Healthcare
Machine Learning and AI for Healthcare

Explore the theory and practical applications of artificial intelligence (AI) and machine learning in healthcare. This book offers a guided tour of machine learning algorithms, architecture design, and applications of learning in healthcare and big data challenges. You'll discover the ethical implications of healthcare data analytics and the future of AI in population and patient health optimization. You'll also create a machine learning model, evaluate performance and operationalize its outcomes within your organization. Machine Learning and AI for Healthcare provides techniques on how to apply machine learning within your organization and evaluate the efficacy, suitability, and efficiency of AI applications. These are illustrated through leading case studies, including how chronic disease is being redefined through patient-led data learning and the Internet of Things. Gain a deeper understanding of key machine learning algorithms and their use and implementation within wide ...
MATLAB Machine Learning Recipes, 2nd Edition
MATLAB Machine Learning Recipes, 2nd Edition

Harness the power of MATLAB to resolve a wide range of machine learning challenges. This book provides a series of examples of technologies critical to machine learning. Each example solves a real-world problem. All code in MATLAB Machine Learning Recipes: A Problem-Solution Approach is executable. The toolbox that the code uses provides a complete set of functions needed to implement all aspects of machine learning. Authors Michael Paluszek and Stephanie Thomas show how all of these technologies allow the reader to build sophisticated applications to solve problems with pattern recognition, autonomous driving, expert systems, and much more. How to write code for machine learning, adaptive control and estimation using MATLAB; How these three areas complement each other; How these three areas are needed for robust machine learning applications; How to use MATLAB graphics and visualization tools for machine learning; How to code real world examples in MATLAB for major applications of ...
Natural Language Processing Recipes
Natural Language Processing Recipes

Implement natural language processing applications with Python using a problem-solution approach. This book has numerous coding exercises that will help you to quickly deploy natural language processing techniques, such as text classification, parts of speech identification, topic modeling, text summarization, text generation, entity extraction, and sentiment analysis. Natural Language Processing Recipes starts by offering solutions for cleaning and preprocessing text data and ways to analyze it with advanced algorithms. You'll see practical applications of the semantic as well as syntactic analysis of text, as well as complex natural language processing approaches that involve text normalization, advanced preprocessing, POS tagging, and sentiment analysis. You will also learn various applications of machine learning and deep learning in natural language processing. By using the recipes in this book, you will have a toolbox of solutions to apply to your own projects in the real w ...
Building Chatbots with Python
Building Chatbots with Python

Build your own chatbot using Python and open source tools. This book begins with an introduction to chatbots where you will gain vital information on their architecture. You will then dive straight into natural language processing with the natural language toolkit (NLTK) for building a custom language processing platform for your chatbot. With this foundation, you will take a look at different natural language processing techniques so that you can choose the right one for you. The next stage is to learn to build a chatbot using the API.ai platform and define its intents and entities. During this example, you will learn to enable communication with your bot and also take a look at key points of its integration and deployment. The final chapter of Building Chatbots with Python teaches you how to build, train, and deploy your very own chatbot. Using open source libraries and machine learning techniques you will learn to predict conditions for your bot and develop a conversational ag ...
Machine Learning with PySpark
Machine Learning with PySpark

Build machine learning models, natural language processing applications, and recommender systems with PySpark to solve various business challenges. This book starts with the fundamentals of Spark and its evolution and then covers the entire spectrum of traditional machine learning algorithms along with natural language processing and recommender systems using PySpark. Machine Learning with PySpark shows you how to build supervised machine learning models such as linear regression, logistic regression, decision trees, and random forest. You'll also see unsupervised machine learning models such as K-means and hierarchical clustering. A major portion of the book focuses on feature engineering to create useful features with PySpark to train the machine learning models. The natural language processing section covers text processing, text mining, and embedding for classification. After reading this book, you will understand how to use PySpark's machine learning library to build and tra ...
Machine Learning Applications Using Python
Machine Learning Applications Using Python

Gain practical skills in machine learning for finance, healthcare, and retail. This book uses a hands-on approach by providing case studies from each of these domains: you'll see examples that demonstrate how to use machine learning as a tool for business enhancement. As a domain expert, you will not only discover how machine learning is used in finance, healthcare, and retail, but also work through practical case studies where machine learning has been implemented. Machine Learning Applications Using Python is divided into three sections, one for each of the domains (healthcare, finance, and retail). Each section starts with an overview of machine learning and key technological advancements in that domain. You'll then learn more by using case studies on how organizations are changing the game in their chosen markets. This book has practical case studies with Python code and domain-specific innovative ideas for monetizing machine learning. Discover applied machine learning proces ...
      Next →
Reproduction of site books is authorized only for informative purposes and strictly for personal, private use.
Only Direct Download
IT eBooks Group © 2011-2019